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Chapter 1
‘Introduction

The study of structural acoustics and fluid-structure interaction involves the solu-
tion of problems of acoustic radiation and scattering, elastic and structural wave
propagation, and their interaction. Only relatively few, simple cases can be solved
analytically and when the wavelength is of the same order as characteristic length
scales asymptotic methods usually cannot be employed. Thus, most configurations
of practical interest must be solved by standard computational tools such as bound-
ary element, finite difference and finite element methods. Exterior problems of wave
propagation pose a unique challenge to computation since the unbounded region is
inappropriate for direct implementation of computational techniques. The derivation
of mathematically sound continuous formulations that provide suitable bases for the
computation of solutions to exterior problems of acoustics is not a trivial task. The
performance of numerical methods that are then based on such a formulation, in
terms of accuracy and convergence, as well as computational cost-effectiveness, also
requires careful consideration. This work reviews recent developments in numerical
methods that address these issues. _ '

Acoustic problems, in addition to being of interest in their own right, can also be
considered as scalar models for elastic and structural waves. The time-harmonic case
is governed by the Helmholtz equation (or the reduced wave equation), with solutions
describing propagating and evanescent waves in acoustic fluids. In the evanescent
mode, time-harmonic acoustics are described by equations similar to many singular
diffusion problems. The solutions to these problems may contain sharp boundary lay-
ers, as in heat conduction with temperature-dependent strong sources due to chemical
reactions, diffusion problems in semiconductors and elastic materials on elastic sup-
ports. There is also general interest in the Helmholtz equation in an abstract setting
because of stability problems that are associated with its operator, namely, there is
potential loss of ellipticity with increasing wave number in the propagation region,
and a diminishing capability to characterize derivatives of the solution with increasing
decay rate (stability in the H' sense).

Numerical solutions to the reduced wave equation in exterior domains have been
sought primarily via techniques that are based on Helmholtz integral representations
of the problem, relating quantities on the physical boundary of the problem. Such
formulations are obtained by using fundamenta) solutions as weighting functions and
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employing Green's theorem, a procedure that typically is restricted to linear, isotropic
and homogeneous problems. These equations lead to direct [20] and indirect bound-
ary element methods [101] (see also the survey in [137]), with the benefit of a prior:
satisfaction of the radiation condition at infinity, and the advantage of seeking so- -
lutions over a domain that is of one dimension lower than the original form of the
problem. On the other hand, methods of this kind are known to encounter difficulties,
such as potential non-uniqueness of the solution of the continuous boundary integral
equations at characteristic wave numbers of corresponding, but physically unrelated,
interior problems. This is not a property of ezact solutions of the boundary-value
problem (see [139, p. 297], [153, pp. 55-60], and references therein), and will lead to ill-
conditioned discrete equations if left uncorrected. Countering this drawback requires
considerable ingenuity since the distribution of critical values becomes progressively
more dense for higher wave numbers and elongated geometries. In Chapter 3, results
pertaining to the uniqueness of boundary integral representations are reviewed in de-
tail. Although these results are well known, the manner by which they arise does not
appear to be fully appreciated. The resulting restriction of the application of these
methods in their original form to problems with wave numbers below a critical limit -
has been recognized practically since their inception ([22], [104, pp. 128-136], and
[105, pp. 498-500]), and over the years numerous remedies have been attempted.
Foremost among these are the following three approaches: The CHIEF method,
due to Schenck [130], in which the integral formulation is modified by adding equa-
tions to enforce solutions to vanish at points in the interior, thereby differentiating
fictitious solutions from the desired one; the advantage of solving the resulting over-
determined system of equations without significant addition in cost or complexity is
counteracted by the lack of rigorous criteria for selecting interior points and deter-
mining the limit of stability. The interior points must be sufficient in number and
judiciously located on one hand, yet too many points can degrade the conditioning
of the linear equations. The Burton-Miller approach [19] of combining the integral
equation with its normal derivative theoretically precludes non-unique solutions; while
conventional formulations lead to excessive computational cost of equation formation
(the impact of computations performed in [6] is examined in Chapter 7), recent work
[107] indicates that this difficulty may be overcome, although some implementational

. 1ssues (such as the need for C' interpolation) remain unresolved. The third approach

Is to replace the fundamental solution in the boundary integral equation with a mod-
ified Green function, [95] and [102]; however, this scheme is not simple to implement
and a correlation between the number of terms employed in the kernel and the modes
of fictitious solutions that are suppressed is not generally accepted.

Despite ongoing efforts, a satisfactory resolution is apparently yet to be recognized
by the computational acoustics community, as evidenced by the profusion of recent
and current literature dealing with these topics, e.g., [26, 54, 100, 133]. Burton-
Miller formulations, when properly employed, appear to offer the most promising
basis for boundary-based computation in that non-unique solutions are rigorously
excluded. Traditional implementations of this procedure suffer from the shortcoming
of attempting to numerically integrate hyper-singular kernels, thereby exacerbating an
existing difficulty of boundary element methods in integrating weakly singular kernels
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(which come about by the use of fundamental solutions. and are analytically integrable
but often cause numerical difficulties. in particular when higher-order interpolation
functions are employed). These issues are circumvented in [107] by transforming the
Burton-Miller formulation into one in which no hyper-singular kernels remain, greatly
enhancing the appeal of this approach. An alternative is to employ a weak form of
the Burton-Miller approach which allows consistent use of C° approximation while
potentially remaining theoretically sound yet computationally competitive [97].

In this work we take a different course and review developments in finite ele-
ment methods for the Helmholtz equation in unbounded domains. Having reached a
high degree of mathematical and algorithmic sophistication, finite element methods,
which are based on variational formulations, have become the numerical technique of
choice for numerous classes of boundary-value problems, and are emerging as strong
challengers to entrenched traditional approximate solution methods in many others.
Finite element methods are not restricted to homogeneous, isotropic, linear prob-
lems, which is often the case for boundary elements. When applicable, boundary
elements do have an ostensible advantage. For example, in three dimensions they
require only surface discretization as compared to volumetric in the case of finite
elements, thereby reducing the number of equations to be solved. However, the re-
sulting systems of equations are nonsymmetric and dense, as opposed to symmetric
and banded in finite elements. The computational advantage in processing time and
storage requirements that would be expected intuitively is therefore not always real-
ized in the ranges of problem size to which direct and iterative solution strategies are
each applicable, rendering the two methods economically competitive for large-scale
computation (as demonstrated in Chapter 7). Nevertheless the task of discretization
is substantially simpler for boundary element methods, an important consideration .
in model preparation. In contrast to boundary element methods which are often
based on collocation and hence may be difficult to analyze, finite elements have a
rich mathematical background which can be used to prove convergence of numerical
solutions to the exact solution with mesh refinement (in Chapter 6), and at times aid
in method design (see Chapter 5). Finally, there is no theoretical limitation on the
applicability of finite element methods to high wave numbers in exterior problems, as
one encounters in boundary integral equations in their original form. The Galerkin
finite element method is capable of modeling increasingly higher wave numbers by
refining the mesh. However, this may become prohibitively expensive, and we will
explore in depth herein methods of achieving this goal by less costly means.

In the field of structural acoustics, the use of finite element methods in modeling
elastic solids is on the rise, coupled with (and on occasion supplanting) boundary
element methods to model the acoustic fluid, e.g., 8, 29, 117]. Two fundamental
impediments to the direct application of finite element methods to modeling acous-
tic fluids are the unbounded domain and the stability issues discussed above. The
utilization of exponential shape functions in so-called infinite elements was suggested
as a means to circumvent the difficulty associated with the exterior domain [17], see
Chapter 3. Other approaches convert the boundary-value problem to formulations
that are defined over bounded regions by introducing an artificial external bound-
ary with appropriate boundary conditions. Proper representation of the radiation
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condition then becomes the crucial issue. One approximation to the radiation condi-
tion was obtained by employing an asymptotic expansion of the far-field solution to
- generate a sequence of local boundary operators [15]. In a recent implementation of
this scheme, finite elements were used to model the transient response of an acoustic
fluid in an exterior domain coupled to a viscoelastic structure [123]. Numerous other
schemes have been proposed, many of which are surveyed in the exhaustive reviews
[1, pp. 95-116] and [40]. Once a boundary-value problem is formulated in a bounded
region, finite element methods may be employed for computation, taking advantage
of the wide range of applicability and rich mathematical structure inherent in these
techniques. - -

In this work, a computational formulation is derived by the DtN method proposed
by Givoli and Keller [41] for converting boundary-value problems defined over large
or unbounded domains to formulations that are suitable for domain-based computa-
tion. This procedure formulates a boundary-value problem in a bounded region by
imposing a relation between the function and its normal derivative on an artificial
boundary. The goal is for the solution of the DtN formulation to be the restriction -
of the exact (and unique) solution of the original problem to this bounded domain.
The investigation in Chapter 3, which rigorously shows that the DtN method achieves
this goal by devising an ezact and non-reflective boundary condition that is imposed -
on the exterior of the computational domain, was prompted by experience with the
difficulties related to non-uniqueness of boundary integral representations. Simple
criteria guaranteeing the uniqueness of solutions in practical implementation are also
presented in Chapter 3 and local approximations of DtN boundary conditions are
characterized. (A modified DtN boundary condition has been developed to circum-
vent these criteria yet lead to well-posed problems [53].) This study indicates that
DtN formulations provide a suitable basis for domain-based computation of solutions
to exterior problems. Employing DtN boundary conditions enables the development
of finite element methods that converge with mesh refinement for fized computa-
tional domains. Other details on the DtN procedure and its application to problems
of time-harmonic acoustics in exterior domains are presented in Chapter 3.

The degradation of stability that arises in the type of problems discussed herein,
and the resulting numerical pathologies, are addressed by employing a general tech-
nique that was developed precisely to counteract such difficulties and specializing it
~ to this application. This methodology, in which the process of designing finite ele-
ments is based on understanding the underlying mathematical framework, has given
rise to a profusion of new classes of methods, e.g., [27, 34, 35, 36, 71, 72, 76, 77, 87].
In such cases, additional quantities are introduced into the formulation in order to
demonstrate convergence of numerical solutions to the exact solution. By endowing
the method in this manner with a sound mathematical foundation its performance
on general configurations is guaranteed, and stability properties are enhanced while
maintaining higher-order accuracy. .

Such ideas were developed by Hughes and Brooks for problems of convective trans-
port [72], and originally referred to as ‘streamline-upwind /Petrov-Galerkin’ (SUPG,
also called ‘streamline-diffusion’ and ‘anisotropic balancing diffusion’). These meth-
ods were later extended to advective-diffusive systems [78, 93], applied to Stokes [75],
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and compressible and incompressible flows, e.g.; [79, 87, 94], and have since undergone
extensive refinement and mathematical analysis (for a review see [70]. and Johnson
[88, pp. 181-188, 199-204 and 259-268], and references therein).

In a more recent development, the concept of ‘Galerkin/least-squares’ has arisen
as a generalization of these ideas. This methodology is obtained by appending terms
in least-squares form to the standard Galerkin formulation. The added terms con-
tain residuals of the Euler-Lagrange equations of the boundary-value. problem usually
evaluated over element interiors, thereby preserving the consistency inherent in the
Galerkin method (an important ingredient in obtaining improved. convergence rates
with higher-order interpolation) as well as respecting regularity requirements on the
functions employed. The notion of Galerkin/least-squares crystallized in [76] and in
the application of ideas of this sort to abstract mixed problems by Franca and Hughes
(see [36] and references therein) and their colleagues, and was the key to recognizing
these techniques as part of a general framework.

In fluid mechanics, Galerkin/least-squares methods are identical to SUPG for
hyperbolic cases, but the analysis in the presence of diffusion is simpler [76]. For
mixed problems, critical stability conditions governing well-posedness are violated in
the Galerkin framework by many practically convenient interpolations. Under the
Galerkin/least-squares umbrella, general combinations of interpolations (including
equal-order ones) become convergent, either by circumuventing the stability conditions
in the case of Stokes [73], compressible and incompressible elasticity [37], Reissner-
Mindlin plate [74] and contact problems [12] (in which the constraints are on the
boundaries), or by satisfying these conditions in the application of variational prin-
ciples (such as Hellinger-Reissner formulations) to compressible and incompressible
elasticity [33], and structural models (see [36] and references therein). In a similar
application, mixed variational principles of linear elasticity with independent rotation
fields are modified to engender displacement-type formulations that converge for all
combinations of interpolations [71]. These formulations lead to membrane elements
with drilling (in-plane rotational) degrees of freedom in the two-dimensional case,
which may be employed to facilitate the analysis of shells. Galerkin/least-squares
methods have also been implemented as a crucial stabilizing ingredient in space-time
finite element methods both for first-order [76] and [93] and second-order hyperbolic
equations [77]. Parameters that are employed in many of these methods were char-
acterized in [61]. ' '

An initial investigation employing Galerkin/ least-squares technology to relax wave-
resolution requirements for problems of time-harmonic acoustics is presented in Chap-
ter 5. This work is later generalized in Chapter 6 exploiting the mathematical struc-
ture inherent in finite elements to design and analyze the methods proposed. The
demonstrated success of Galerkin/least-squares methodology in generating mixed fi-
nite element formulations that are mathematically rigorous, simple to implement and
computationally efficient is particularly promising in considering problems of struc-
tural acoustics and fluid-structure interaction, in which the coupling terms are similar
in nature to those found in abstract mixed problems.

Other alternatives to the basic Galerkin formulation may be constructed with-
out upsetting consistency. Douglas and Wang modified the Galerkin/least-squares
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method for Stokes flow presented in [73] by altering the weighting of the additional
terms [27]. This nonsymmetric formulation, which is stable under more lenient con-
* ditions than its Galerkin/least-squares counterpart, was later extended to advection-
 diffusion problems [35]. A modification to the treatment of the jump terms in [73]
is presented in [138]. Franca and Dutra do Carmo introduced a method they called
‘Galerkin/gradient least-squares’ in which the least-squares terms contain residuals
of the gradient of the governing differential equation [34]. This method is intended
for modeling complex boundary layer phenomena, such as arise in the analysis of thin

structures, and thus far was successfully applied to scalar singular diffusion problems

(also related to evanescent time-harmonic acoustics). In Chapter 5 the performance
of Galerkin/gradient least-squares methods on problems of time-harmonic acoustics
is evaluated and found to be comparable to Galerkin/least-squares in the entire range
of decay and in a portion of the range of propagation. '

In Chapter 2 boundary-value problems of structural acoustics in exterior domains
are introduced. Problems that are suitable for domain-based computation, obtained
via the DtN method, are characterized in Chapter 3 and properties of resulting con-
tinuous and discrete formulations are reviewed. Galerkin, Galerkin/least-squares and
Galerkin /gradient least-squares finite element methods are presented in Chapter 4.

In Chapter 5 we consider simplified inhomogeneous radiation problems—radiation
loading of acoustic media by prescribed boundary. conditions as induced by the vi-
bration of a structure (thereby emphasizing boundary conditions of the Neumann
type), with particular reference to exterior domains. We work in one dimension for
simplicity, but never embark on a course that would preclude multi-dimensional gen-
eralizations. Model problems are employed to examine the numerical formulations

and design the Galerkin/least-squares operator. We concentrate on Galerkin/least-

squares methods, but also examine the application of Galerkin/gradient least-squares
operators to this class of problems. In recent years, there has been a resurgence of
interest in the use of hierarchical p-version finite elements and spectral elements to
obtain high-resolution numerical solutions for structural acoustics. Results from a
complex wavenumber dispersion analysis provide a guide for the design of p- and
hp-version adaptive schemes, high-order preconditioners for iterative solution meth-
ods and the selection of optimal Galerkin/least-squares mesh parameters for elements
using high-order basis functions.

The initial work presented in Chapter 5 is then extended to more general settings.
The effect of nodal spacing and the performance of the methods proposed in multidi-
mensional configurations are investigated in Chapter 6, and the general convergence
of solutions obtained by Galerkin/least-squares finite element methods is presented,
with error bounds obtained for the case of unresolved waves, guaranteeing the per-
formance of these methods on configurations of practical interest. The performance
of the methods proposed is validated by numerical examples.

Cost-effectiveness of numerical schemes is a primary concern in method design,
since it determines both the economics of computation and the limit of problem-
solving capabilities on existing computer technology. The demand for large-scale
problem-solving capabilities is growing with increasing interest in the numerical mod-
eling of realistic configurations, driving the development of sophisticated algorithms
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that are amenable to efficient implementation on modern vector and parallel plat-
forms. In Chapter 7 computational attributes of boundary element and finite ele-
ment methods are examined. Direct solution techniques are reviewed, and the cost of
employing such techniques to solve the equations arising from boundary element and
finite element analyses of a wide range of geometric configurations is evaluated and

compared. This study is repeated for iterative solvers, employing the GMRES pro-
cedure as a representative technique. The two solution strategies are then compared,
and the cost of equation formation is examined. This work clearly demonstrates that
finite element methods are economically competitive with boundary element methods
for obtaining solutions to problems of time-harmonic acoustics. - ‘

‘Finite element methods are capable of modeling problems of structural acoustics at
arbitrarily high wavenumbers providing that an appropriate level of mesh reﬁnemént
1s employed. However, direct solution techniques become prohibitively expensive
for the level of mesh refinement necessary at high wavenumbers. Iterative solution
strategies are an attractive alternative in these situations. Efficient methods for the
solution of large-scale matrix problems that arise from finite element methods for
structural acoustics are presented in Chapter 8. Results from a number of numerical
tests on both sequential and parallel computers are presented to highlight the superior
performance of methods considered. .

The Galerkin/least-squares method for the Helmholtz equation provides accuracy
and stability with lower resolution than the Galerkin method. A second mechanism
for enhancing accuracy is adaptivity, which is the subject of Chapter 9. An a poste-
riori error estimator and adaptive strategy are derived specifically for the Helmholtz
equation and the role of adaptivity in reducing the cost of computation is addressed.

Galerkin/generalized least-squares methods are developed and applied to model
the steady-state response of in vacuo and fluid-loaded Timoshenko beams in Chap-
ter 10. The goal of the new methods is to decrease the computational burden required
to achieve a desired accuracy level at a particular frequency thereby enabling larger
scale, higher frequency computations for a given platform. Methods for the in vacuo
response of beams are first presented. Numerical and analytic results for the method
. are then presented and compared to standard approaches. Methods for the coupled
problem are presented next followed by results. v

Chapter 11 presents the design of new space-time finite element formulations for
the solution of transient structural acoustics problems in exterior domains. The for-
mulation is based on a time-discontinuous Galerkin/least-squares variational equa-
tion for both the structure and the acoustic fluid together with their interaction.
The result is an algorithm for time-dependent wave propagation with the desired
combination of good stability and high accuracy. New time-dependent non-reflecting
boundary conditions for the acoustic wave equation are developed based on the exact
impedance relation of the Dirichlet-to-Neumann (DtN) map in the frequency domain.
Time-dependent counterparts are obtained through an inverse Fourier transform pro-
cedure. Optimal stability estimates and convergence rates are reported together with
a discussion of the positive form of the resulting space-time matrix equations. Rep-
resentative numerical examples involving transient radiation achieved by the new
method for structural acoustics.

C we pranted.




Chapter 2

Boundary Value Problems for
Time-harmonic Structural
A coustics

First, the boundary value problem for the coupled system is given. The acoustic .
domain of the original problem is infinite. Using the DtN boundary condition, an
equivalent problem on a finite domain is obtained which is amenable to computation.

The weak form of the problem is given next.

2.1 Strdng Form of the Exterior Problem

Consider an elastic body immersed in an infinite acoustic medium. The elastic body
occupies the domain , C R?, where d = 2 or 3 is the number of spatial dimensions
(Fig. 2.1). If the dynamics of the elastic body are to be approximated by a reduced
shell or plate theory, as will be the case in this paper, then the elastic domain is
parameterized by a surface if d = 3 or a curve if d = 2. The interior surface of the
structure is denoted by I'". The domain interior to Q, is assumed to be evacuated;
therefore only mechanical forces act on I'". The surface exterior to ), is denoted by
- I'. This surface (or curve) is the fluid-structure interface (sometimes called the wet .
surface) where the acoustic pressure loads the structure. The unit normal outward
- from the structure (inward toward the fluid) on I' is i € R%. The infinite domain
exterior to the surface I' is denoted by R C R% In Fig. 2.1, a finite fluid domain,
defined by the region Q; C R is pictured. Qs occupies the region between the surfaces
I' and OBgr, where 0Bp, is the truncation boundary of the fluid.
The boundary T is assumed to admit the nonoverlapping partition

r=rjurf . (2.1)

The boundary of the structural domain admits the partitions

M, =I5 UT;. | (2.2)
where ¢ = 1,...,n4os with ny,; being the number degrees of freedom of the structural

model.
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Figure 2.1: Geometry for elastic structure in acoustic medium.
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All variables are assumed to undergo time harmonic vibrations of the form e~
where 7 = /=1 and w is the angular frequency. With the geometrical definitions in
hand we move to the formal statement of the strong form and the definitions involved
~ therein. , |

The strong form of the exterior structural acoustics problem is: find the displace-
ment vector u : {1, — C™ and the acoustic pressure p : R — C satisfying: the
governing differential equations:

Lsp = f in Q; and R (2.3)
Lou = q-n0°plr in Q, ,
essential and natural boundary conditions:
P =g on Fg . (2.5)
Pn =h on T | (2.6)
U; = g; on P;', 1= 1,...,ndof , (2.7)
B;u = h; ‘on f“ t=1,...,n45 , (2.8)
plus a consistency condition relating I‘{ and ';  ,see below;
continuity of normal displacement at the fluid-solid interface:
n-Vp =pwi*-u  onl ; (2.9)
and radiation conditions expressed either as:
Lm r02(p, — ikyp) =0 (2.10)
or through the Dirichlet-to-Neumann map as: = . A
pn =-—Mp on dBr . (2.11)
The pressure, p, satisfies the Helmholtzequation, (2.3), where L; := -V?% — k2,

V2 is the Laplacian, the acoustic wave number is defined as ko = w/co where g is the
speed of sound in the fluid medium, po is the density of the fluid, and f:8y - C,
the acoustic sources are restricted to ;. :

The structural matrix differential operator, £L,, is left as generic; symbolically it
represents the governing differential equations of the structure which interface the
fluid on T and all attached substructures. The structural response may be modeled
using the equations of linear elasticity; this case is presented in the thesis of Abboud
[1]. The applied mechanical forces are given by q : Q, — C™/. As the displacement
~ vector may contain rotational and translational degrees of freedom, we define n® €
R"™ef, the unit vector which when dotted with the displacement vector yields the
normal displacement. The effect of the acoustic pressure acting in the normal direction
on I' is denoted by A®p|r.

The given functions which define the boundary conditions are g : I‘g — C,
h : F}; — C, g : F;.- — C and &; : [';, = C. The normal derivative is defined
as p,n:= Vp-n where n is the unit outward pointing normal from the domain £
V is the gradient operator and the inferior comma denotes differentiation. On the
fluid-structure interface, there is a consistency condition relating natural boundary
conditions on the pressure (on I'}) to essential boundary conditions on the normal
structural displacement (define as s ). For the remainder of this paper, we en-
force natural boundary conditions on the pressure through the essential boundary
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conditions on the normal component of the displacement. The components of u are
u;. B; is vector differential operator which operates on the displacement to yield the
natural boundary condition. However, the exact form of the natural boundary condi-
tions in (2.8) cannot be explicitly written down until we fix the governing differential
equations for the structure (this is just a consequence of the abstract and formal
nature of the presentation given in this chapter; these terms will be explicitly defined
when applied to a problem). »

The radiation condition, (2.10) , (see e.g., [96]) is stated in terms a radial variable,
r, where r 1s the distance from the origin of a spherical or polar coordinate system.
This condition requires that the scattered pressure is outgoing at infinity. Application
of this form of the radiation condition, however, is not suitable for domain based
calculations. Therefore, an artificial boundary, 8Bg, is introduced. The artificial
boundary is obtained by holding constant the radial variable of a Helmholtz separable
[114] coordinate system (e.g., the radius for a spherical system). On this special
class of boundaries, one may write the exact impedance boundary condition, (2.11),
imposition of which results in an problem equivalent to the original one posed on the
infinite domain, R. The integral operator which relates the Dirichlet pressure data
to the Neumann normal derivative data on the separable surface is the Dirichlet-to-
Neumann (or DtN) map, is M. The use of the DtN map to truncate finite element
calculations for exterior acoustics was probably first described by Feng [30], but the
methodology was crystallized in the work of Givoli and Keller [41, 98]. The application
of the DtN for exterior acoustics problems is discussed in detail [56, 41, 98]. The DtN
formulation is valid only for acoustic sources f € Q f-
Remark: '

1. The above formulation assumes that p is purely outgoing. The inclusion of
plane wave excitation of the structure and fluid is straightforward. First one
sets p = p°° 4+ p'™® where p*°! is the unknown scattered pressure and p‘*
is the known incident plane wave field. By using the fact that p'™ satisfies -
the homogeneous Helmholtz equation, a formulation for p*°** and u which now
includes inhomogeneous terms due to the incident pressure is obtairied.

2.2 Weak Form of the Exterior Problem

The weak form of the exterior structural acoustics problem is given next. Denote the
space of square integrable functions on 2 as L2(Q) and the Sobolev space H™(1) as
the space of functions with all derivatives up to the mth derivative in LY(Q).

First we define the variational spaces necessary for the structural variables. Let
the space of solution vectors for the displacement be denoted by Sy where Sy = {ulu:
Qs — Chaes oy, € H™(8),u; = g; on 'y, where { = 1,...,n4,5}. The theory used
to describe the structural response determines the value of m; for the ith component
of u. The space of weighting functions, Vy, to which @ belongs, differs from Sy, only
in that the components of W, defined by %;, satisfy homogeneous essential boundary
conditions on Ty,. Let the solution space for the acoustic pressure be denoted by
Sp where S, = {plp : Q; — C,p € H'(Qy),p = g on T,}. The space of weighting
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functions for the pressure, V,, is the same as S, except that homogeneous boundary
conditions are indicated for the functions in V, on I',.

The weak form of the problem is: Given q, f, g, &, g; and h; for i = 1....,nuy
find u € Sy and p € S, such that forallT € Vyand p €V,

o/ (B,p) + (PA°, powu)r + (B, Mp)os, =L/(p) |, (2.12)
a’(U,u) + (U, A’p)r =L°(T@) , (2.13)
where

af(ﬁ?p) = (Vp) vp)ﬂj - k(z)(ﬁ’p)ﬂf ey (214)
L (p) = (5, o, (2.15)
L*(m) :=(T,q)e, + Tict’ (@, hi)r,, (2.16)

and ,
(W, q)e = /Q uqdQ -, (2.17)

the superscript ¥ indicates the Hermitian of the vector. The structural operator,
a’(-,-) represents an integral of the the potential and kinetic energy densities for
the structure which cannot be explicitly defined until governing equations for the
structure are given. Note that all of the operators are sesquilinear (i.e., conjugate
linear in the first slot and linear in the second).




Chapter 3

‘Analysis of Formulations
Underlying Computation

In the following, we analyze formulations for domain-based acoustic computation
that are derived by the DtN method for exterior problems. The acoustic field vari-
able in the Helmholtz equation is denoted ¢, representing the acoustic pressure of
velocity potential. The analytical results are derived in [58] and the numerical stud-
ies are presented in [63]. The DtN method was developed by Givoli and Keller [41]
for converting boundary-value problems defined over large or unbounded domains
to formulations that are suitable for numerical analysis. The DtN method typically
employs artificial boundaries of relatively simple geometric shape, allowing the prob-
lem in the exterior of the artificial boundary to be solved analytically. A relation
between the function and its normal derivative is thus obtained, and imposed on the
artificial boundary as an ezact boundary condition to the computational formulation.
Experience with the difficulties related to non-uniqueness of boundary integral repre-
sentations demonstrates the importance of investigating the continuous formulations
underlying computation. .

The DtN formulation is shown to possess non-reflective boundary conditions and
to give rise to exact (and, by implication, unique) solutions. Truncating the DtN
operator, which is often expressed in terms of an infinite series, may cause loss of
uniqueness at characteristic wave numbers of higher harmonics. Simple expressions
are derived to determine a sufficient number of terms in the operator for unique
solutions at any given wave number. Numerical studies confirm these results. A local
counterpart of the DtN map is shown to be unique for all wave numbers.

3.1 Properties of the DtN Formulation

We wish to compare solutions of the DtN problem in the computational domain
2y with boundary condition (2.11) to the solution of the exterior problem with the
radiation condition (2.10).

Theorem The DtN boundary-value problem has a unique solution for all wave num-
bers. Furthermore, this solution is the restriction of the solution to the original prob-
lem in the unbounded domain to the computational domain.

13
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Proof See [58].

Being a differentiation operator, the DtN map is an unbounded linear operator,
and in addition

M # 0 (3.1)

for all finite values of kR. : ,
To verify these properties we examine the operator more closely. In two dimen-
sions, the DtN map is given by

' o 27 , : . :
Mp = >lan / cosn(f — 6')p(R,6")do’ (3.2)
0

n=0

where the prime on the sum indicates that the first term is halved. The coefficients
are : :

k HV'(kR)

™ H(kR)

where H(!) are Hankel functions of the first kind and the prime on functions denotes -
differentiation with respect to the argument. (A general reference for properties of
cylindrical and spherical eigenfunctions of the Helmholtz equation is [114, Chap-
ter 11]) Hankel functions of the first kind correspond to outgoing cylindrical waves
and are defined as '

(3.3)

Qn

HO(r) 1= Jo(r) + i¥a(r) (3.4)

in terms of the linearly independent Bessel functions J, and Weber functions Y.

Thus _ _
T J!(kR) +iY/(kR)
k Jo(kR) + 1Y, (kR)
. JUkR)Ja(kR) + Y(kR) Y. (kR)
J2(kR) + Y2(kR)
(Y}(kR)Ju(kR) — J.(ER) Ya(kR))
’ J2(ER) + Y2(ER)

(3.5)

' By Abel’s identity for the Wronskian df an ordinary differential equation, since J,
and Y, are linearly independent solutions to Bessel’s equation

dr -
YI W — ! = _ —- .
wdn — Y, = cexp ( / . ) (3.6)
with the constant ¢ # 0. Evaluating the right-hand side for this case yields
Yi(kB)Jo(kE) = JL(R)Ya(k) = — > 0 (3.7)

indicating that there is no finite value of kR for which J, and Y, are simultaneously
zero. In particular,
O kR)|

= J,f(kR)+Y,f.(kR) > .0 - (88)
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for all kR > 0, and hence Im a, < 0 and is bounded. The coefficients a,, are bounded
for all finite n and kR > 0, with asymptotic approximations of the magnitudes

lan] ~ —=, 2n+1>kR 39
TR

Analogs of the above properties for the three-dimensional case are presented in [38].
Thus, M is not the zero operator. These properties corroborate the statement
made in [98] that there are no restrictions on permissible values of R for exterior
problems. Another consequence is that the DtN map is one-to-one, and thus has an
inverse (Neumann- to—DlrlchIet) operator, a linear bounded (and hence continuous)
operator with a norm of min|e,|. We use the fact that Ima, # 0 in subsequent

sections.

3.2 The Truncated DtN Map

The DtN map is represented by an infinite series. (See, e.g, (3.2) for the two-
dimensional case.) In practice the map is approximated by truncating the series.
We wish to examine the effect of this truncation on uniqueness of the solution of the
computational problem. Let' M" denote the DtN map truncated after N terms.

3.2.1 Conditions for uniqueness

In contrast to the full DtN map, the truncated map is a bounded linear operator with
a norm of, e.g., in two dimensions, max |t |, where,

N -1
rnn<%<]an| = |lany_1| ~ 5 2N —-1> kR »(3.10)

cf. (3.9).
_ Let v be the difference between two solutions to the DtN boundary-value problem
with the DtN map in (2:11) replaced by M™. This function satisfies the homogeneous

problem. The complex conjugate of v satisfies this boundary—value problem with the
DtN map replaced by MV

0 = /(va—ucfz-)) 0

Sy

= -2 /Im{vMN }dF . (3.11)
dBgp
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Uniqueness hinges on the effectiveness of the truncated DtN formulation of the free-
space problem, i.e., in precluding modes of the Laplacian in the entire ball Bg. Bound-
ary conditions on the wet surface I have no effect on this statement.

To interpret the statement of zero energy flux through the artificial boundary
in the context of the truncated DtN map we consider examples in two dimensions.
(Similar results for the three-dimensional case are in terms of spherical harmonics
[58].) The first is the one-term approximation

27

MR = 2 / o(R,0)d0 (3.12)
0 K '
For this case
2T
0 = / Im {oM'v} o
3 2 2
_ m Qo
= . 0/ (R, ) df (3.13)
and since Im ap # 0 ‘
27
/ v(R,8)d0 = 0 - (3.14)

0 A
i.e., the one-term approximation admits all eigenfunctions of the Laplacian in the
entire circle of radius R with a Neumann boundary condition on the artificial bound-
ary, except for the first mode. (A general reference for characterization of solutions-
of eigenvalue problems of differential equations is [23 Chapter VI].)
Similarly, the two-term approximation

2
2)(R,0) = M'(R,0)+0 / cos(f — 8') v(R, 8') d6’ (3.15)
. ’ 0 - .

imposes '(‘3.14) and since Imay # 0

27

| / o(R,0)cos6df = 0 (3.16)
J |
2 k
/ o(R,0)sinfdd = 0 (3.17)

L
suppressing the first two modes of the Laplacian in the entire circle with a Neumnann
boundary condition on the artificial boundary, but admitting all others. Approxima-
tions with more terms follow along the same lines, yielding

N-1
> 'Ima,

27 2

/ o(R, ) cosnf db

0

27
/ o(R, 0) sinnf do

0

+

n=0

) = 0 (318
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(Recall that Ima, # 0.) It is clear from this expression that the full map enforces
uniqueness.

In general, the N-term approximation suppresses the first N modes of the Lapla-
cian in the entire ball Bg with a Neumann boundary condition on the artificial bound-
ary, but admits all others. Thus the critical wave number for the truncated DtN
formulation of the two-dimensional free-space problem is the lowest one that satisfies

Ty (kR) =0 - O (3.19)

Boundary conditions on the wet surface I' have played no role in the analysis -
up to this point. Accounting for these boundary conditions modifies the value of
critical wave numbers (but not the fact of their existence). Equation (3.19) provides
an estimate of the critical wave number, but a lower bound is needed. As a rule
Dirichlet boundary conditions are the most restrictive constraints, and Neumann
boundary conditions are the least restrictive. By considering eigenvalue problems
as problems of minimization, it is clear that adding constraints will not reduce the
characteristic value, and removing constraints will not raise it. Thus, a lower bound
for the problem with a Neumann boundary condition on the physical boundary will
bound the characteristic wave numbers for all boundary conditions.

We consider the annular region bounded internally by the circle of radius A (which
circumscribes I') and externally by Br. Consider the homogeneous boundary-value
problem in this domain with a N-term DtN boundary condition. The critical wave
number for this problem will bound from below the critical wave number in £;.

In two-dimensions, before imposing the internal boundary conditions, solutions
have the form

[oo]

v(r,0) = > (HP'(kR)HD (kr) — HOV(kR)H (kr)) (an cosnb + b, sinnb) (3.20)
n=N" )

The presence of Hankel functions of the second kind, H(? := HM | which correspond
to incoming waves, indicates that higher modes are partially reflected from the artifi-
cial boundary. Imposing the Neumann boundary condition on the circle of radius A,-
the critical wave number for the N-term DtN map is the lowest one that satisfies

YY(ER) T (kA) — Jy(kR)Y)(kA) = 0 (321

All two-dimensional problems in Q; with an N-term DtN map are unique at least up to
the lowest wave number that satisfies (3.21). Figure 3.1 shows the dependence of the
geometrically nondimensionalized critical wave number on the domain for truncated
DtN maps with up to four terms. This figure clearly demonstrates that the critical
wave number may be increased by reducing the size of the computational domain.
For comparison, the critical wave number for the Surface Helmholtz Equation in two
dimensions is bounded from below by kA = 2.4. In Fig. 3.2 the critical wave number
i:s nondimensionalized by the radius of the artificial boundary, to show that selecting

N > kR (3.22)
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guarantées uniqueness of solutions to the two-dimensional problem. (Bound (3.22) is

valid for three dimensions as well [58].)
In summary, the solution to the computational problem with the DtN map truncated

after N terms is unique up to the lowest harmonic of mode N + 1.

Remarks.

1. The truncated boundary condition is exact for functions that consist of only
the first N modes.

2. Bounds of the type (3.22) provide an important. guideline to discretization,
* namely that from the point of view of uniqueness a smaller computational do-
main 1s more economical.

3. Grote and Keller have recently proposed a simple modification of the DtN
boundary conditions leading to unique solutions at any wavenumber for any
number of terms in the operator [53].

3.2.2 Numerical studies

We wish to numerically verify the validity of (3.22). A number of terms in the
truncated DtN map that is insufficient for uniqueness of solutions of the continuous
boundary-value problem in the computational domain will lead to ill-conditioned dis-
crete equations. Thus the conditioning of the matrix equations is a reliable numerical
measure of the uniqueness of the formulation. Since the coefficients of the equations
are complex (due to the DtN contribution), the (2-norm) condition number is the
square root of the ratio of the largest to smallest eigenvalues of the coefficient matrix
premultiplied by its Hermitian.

Remark: The performance of iterative techniques for solving linear algebraic systems

of equations is particularly sensitive to the conditioning of the coefficient matrices.

In practical implementation, preconditioning and scaling are employed to improve

. conditioning and thereby accelerate the convergence of the approximate solution.

The numerical evaluations were all performed on two-dimensional configurations of
problems representing infinite cylinders of radius a. Dirichlet boundary conditions are
imposed on the cylinder surface, which is the internal boundary of the domain. DtN
boundary conditions are imposed on the artificial boundary at radius R. The domain

1Is discretized by linear quadrilateral elements, with 32 elements in a circumferential

layer. The number of element layers is selected so that the element sides are roughly
equal in length. For an example see Fig. 3.3. ’

The first series of computations, Fig. 3.4, examines the dependence of the condition
number on N/(kR) for various values of R. All other parameters are kept constant
(k = 3.14, kh = 3.14/3 and ka = 3.14). At a given R the condition number has
a constant, relatively high value for a small number of terms in the DtN map. As
the number of terms is increased there is a sudden drop in the condition number to
a second constant, relatively low value. The drop occurs at N = 0.75 kR, which is
the numerical indication of the minimum number of terms in the DtN map to.assure
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Figure 3.3: The computational domain exterior to a cylinder of radius a, with an
artificial boundary at R = 2a, discretized by 3 x 32 linear quadrilateral elements.

uniqueness of solutions for these cases. For these configurations the bound (3.22) is
somewhat conservative. ‘

In the second series of tests we investigate the effect of large values of ka on the
conditioning. According to analytical results uniqueness of solutions depends only
on N/(kR) and accuracy of finite element methods. on kh. However, computational
experience with boundary element methods indicates that difficulties may occur with
increasing values of ka. These runs were performed with varying values of a, with
k=314, kh = 3.14/3'and R = a + 1. Figure 3.5 shows that the dependence of
the condition number on N/(kR) maintains the same trends as the previous case, in
- which ka was constant (Fig. 3.4). The minimum number of terms in the DtN map to
assure uniqueness again occurs at N = 0.75 kR. The values of the condition number
in the region of uniqueness do not appear to depend heavily on ka. This holds for a
very large range. Values up to ka ~ 60 were examined (see Fig. 3.6 which shows only
the range of unique solutions for better resolution).

The effect of the numerically nondimensionalized wave number kk is examined
next. The values of kh/7 = 0.50, 0.33 and 0.25 correspond to four, six and eight
elements/wave, respectively: All other parameters are kept constant (k = 3.14, ka =
3.14 and R = 3a). Again the dependence of the condition number on N /(kR)
maintains the same trends as in the previous cases, see Fig. 3.7. The drop in condition
number occurs at N = 0.85kR. Overall, these computations confirm that the bound
(3.22) is reliable and should be employed in practice.
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3.3 Local DtN Boundary Conditions

Givoli and Keller [42] have obtained a local counterpart of the truncated map which
inherits the property that it is exact for functions that consist of only the first N
modes. . The resulting boundary conditions may be employed as an approximation to
the full DtN map in the general case. Following the derivation in [114], we consider
the first V modes in two dimensions

N-1 ~
p(R,0) = > '(Ancosnb+ B,sinnf) - (3.23)
n=0 ) .
noting that
m N-1
(—1)"‘dz—dpoLﬁ’—a2 = > 'n*(A,cosnf + B, sinnf) (3.24)
n=0
The DtN boundary condition is
ap ) N-1
5 = T > 'an(An cosnf + B, sinnd) (3.25)
n=0 V

Comparing (3.24) and (3.25) suggests expressing the coefficients as linear combina-
tions _
N-1
1870 = Z anzmv n= 071>"')N_ 1 (326)
m=0 '
where f,, are obtained from solving this N x N linear system. Substitution in (3.25)
yields the local expression '

9 Nl & p(R, 0 U
= —ny (-ra TRl (3.27)
n=0

Numerical evaluations of this formulation have been carried out [44].
Remarks (computational aspects)

1. The element-based data structure of finite element methods is preserved by the
local representation of the DtN boundary condition.

2. The local boundary condition requires higher continuity of finite element func-
tions in the tangential directions along the artificial boundary, commensurate

with the higher tangential derivatives. Appropriate shape functions are being
developed [43].

3. Evaluation of the contribution of the local boundary conditions to the discrete
equations requires only integration of derivatives of finite element shape func-
“tions, which is performed numerically.
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As previously noted, uniqueness of the solution is equivalent to enforcing zero en-
ergy flux through the artificial boundary. Consider the one-term local approximation
in two dimensions -

, JOp

on
This expression approximates the radiation condition for large kR [42]. Consequently,
the error due to employing the local boundary conditions is reduced by increasing the
size of the computational domain.
The difference between two solutions to the DtN problem with a one-term local
approximation, v, must satisfy

= —Tapp (3.28)

2r
0 = / —Im{5agv} df

0

27
=  —Imag / |2 df (3.29)
0

implying, as in the case of the full operator, homogeneous Dirichlet and Neumann
boundary conditions on the artificial boundary, which in turn imply uniqueness of
solutions with a one-term local boundary condition. Adding terms to the local ap-
proximation, equivalent to adding constraints to the corresponding eigenvalue prob-
lem for the Laplacian, cannot introduce new characteristic wave numbers, and hence
any number of terms in the local boundary condition gives rise to unique solutions for
all wave numbers.




Chapter 4
Finite Element Formulations

In this chapter, the discrete approximation to the structural acoustics problem is
described. Discrete methods are obtained by introducing piecewise polynomial in-
terpolation functions over the finite element partitions of the computational domains
into the variational equations. The finite element matrix equations are then obtained.

4.1 Galerkin Method

Let finite element spaces Sz’)’ C S, V;} C V,, St c 8, and Vi C Vu be defined by the
restriction of Sp, Vp, Su and Vy to the space piecewise polynomials of selected order
for each space, for p and u. The discrete approximations for the pressure and for the
displacement are denoted as p* and u”, respectively.

The standard Galerkin finite element method is stated as: Given a, f, 9, h, g
and h; for : = 1,...,n4y, find u* € Sﬁ and p* € 8;‘ such that for all " € Vﬁ and-
= VZ}: ' :

af(ph7ph)+(ﬁhﬁsvpow2uh)F+(ﬁh7Mph)3BR = Lf(p_ ) ’ 4 (41)
(W ut) + (@A) = (@) E (4.2)

where the operators in (4.1) and (4.2) are defined in Chapter 2.

4.2 Galerkin/ Generalized Least-squares Methods

In this section, Galerkin Generalized Least Squares (GGLS) methods are presented for
the fluid-loaded structure. The GGLS finite element method consists of the addition
of a residual-proportional (and thus consistent) least-squares term to the standard
Galerkin finite element method. A particular case of these methods is the classical
Galerkin method, which is obtained by setting the least squares modifications to zero.

The notation () is used to denote the union of finite element interiors covering the
domain §2. The GGLS method can be stated as: Find u* € S! and p* € S,’} such
that for all " € V! and 7" € Vh:

AéGLs(ﬁhaPh)+(ﬁhﬁsapow2uh)l“+(T’h,MPh)BBa = LéGLS(-ph) , (4.3)

25
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: nis )
Sors(Wut) + (T 2°p")r + Y (HIL ' Hin'ph): = Lggrs(@) . (4.4)

1=1

- where

!
"Ls

Abers@, ") = (@0 + Y (H{ L HILiph),, (4.5)
=1
. nig '
Abgrs(@tut) = as(ﬁh,“h)‘*'Z(Hfﬁsﬁh’Hfﬁsuh)ﬁs ) (4.6)
=1
."{,s |
Lars(®") = LY@+ Y (H{LF" H f)g, . | (4.7)
=1
N i nis X . Q
Sers(@) = Ls(ﬁ)-i-Z(Hf,C,iI,qu)ﬁs , : (4.8)

i=1

where nj¢ and nj ¢ are the number of least-squares operators added to the standard -
Galerkin equations for the fluid and structural equations, respectively. At the heart
of these methods is the operator Hf and the ng,s X n4,5 matrix differential operator
H; which contain the design parameters enabling the development of new methods
with enhanced accuracy characteristics. If H} and H? are set to zero, the Galerkin
finite element method is recovered.

For the Helmholtz equation, two methods that have been studied previously are
the Galerkin Least Squares (GLS) method which is defined by ni¢ =1 and

H =7 ,

where 7y is the GLS design parameter. The second is Galerkin Gradient Least Squares
(GVLS) method which is defined by nf s = 1 and

Hf?\/;;:v, ,

where 7¢ is the GVLS desigﬁ parameter. Harari and Hughes have also studied the

~ effect of using GLS and GVLS together (i.e., njg = 2) for the advection diffusion

equation [62]. Optimal selection of the GLS and GVLS parameters is discussed in
34, 57]. - ' |

The structural least-squares operator depends on the particular theory used. Sup-
pose for definiteness that ng,s = 2 then the GLS method is defined by njs =1 and

HSGLS"—"I:\/OT_I \/07_2] . (4.9)

The GV LS method would include a gradient operator on the diagonal of the matrix
in (4.9). The development of the optimal 7’s for the GVLS method applied to the
vector Timoshenko beam equations is presented in[50, 52] and is a topic covered in
Chapter 10. o
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Remark:

1. The essence of the GGLS methods is to add to the standard Galerkin finite
element equations, terms proportional to the residual of the original governing
differential equations integrated over element interiors. Fix nj ¢ = nis =1 and
drop the subscript, the GGLS equations (4.3) and (4.4) may be written as

(H'L;p",  H(Lip" - f))a, +

. ' . (ﬁh,ph) + (ﬁhﬁ pfwzuh)r + (P' Mph)BBR = Lf(p ) ’
(H'L,u*, H(Louh—q+0a"))g, + . '
a’(@,ut) + (0, 8°p")r = L*(@") |

where on the first line in each of these two equations is the residual proportional
term and on the second line are standard Galerkin equations.

These methods are consistent by construction (i.e., the exact solution, when sub-
stituted into the numerical method (4.3) and (4.4), satisfies the equations identically).
The addition of the least squares terms allows the design of methods that enhance the
accuracy of the approximate solution. Care must be taken not to disturb the good
properties of the original Galerkin method while still enhancing accuracy. Finally,
the definition of the operators H; and H; ! must also satisfy conditions of rotational
invariance (method independence of global coordinate frame).




Chapter 5

Acoustic Dispersion Analysis and
Method Design |

In the following we consider simplified inhomogeneous radiation problems—radiation
loading of acoustic media by prescribed boundary conditions as induced by the vi-
bration of a structure (thereby emphasizing boundary conditions of the Neumann
type), with particular reference to exterior domains. Model problems are employed
to examine the numerical formulations and design the Galerkin/least-squares opera-
tor. The acoustic field variable in the Helmholtz equation is denoted ¢, representing
the acoustic pressure of velocity potential.

5.1 A Model Problem for Radiation

Model problems based on the reduced wave equation were constructed in [57] in
order to assess the performance of the numerical methods proposed. These problems,
which exhibit many of the physical features of acoustic phenomena, yet still possess
readily obtainable analytical solutions, are reviewed in the following. We restrict our
attention to elementary solutions to inhomogeneous Neumann problems governed by
the equations of acoustics. The domain is a half-space occupied by a moving acoustic
fluid with a unidirectional uniform mean-flow velocity U, and constant mean-flow
density, pressure and entropy (Fig. 5.1). Due to the motion in the equilibrium state
of the acoustic medium the resulting differential equation involves a convected wave
operator. All quantities are assumed to have known periodic in-plane variation as
well as harmonic time dependence, with given in-plane wave numbers and frequency.

These assumptions yield the one-dimensional problem of an infinite plane radiator
with a modified wave number. Dispersion curves that are possible within this set up
are shown in [57]. In general, the wave number can be either real or imaginary. When
the wave number is real, solutions maintain the character of propagating waves. When
the wave number is imaginary, decay takes the place of propagation, giving rise to
evanescent waves. Numerical solutions often deteriorate in the propagation region as
the wave number increases due to the loss of ellipticity of the differential operator.
Likewise, problems connected to modeling sharp boundary layers arise as the rate of
decay increases. : '

28
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> Y

T

Figure 5.1: The model problem: a moving acoustic medium over an infinite plane
radiator. - :

The performance of finite element methods is usually assessed on the basis of the
value of the error and/or its derivatives measured in an integral norm. Here we refer
to methods that minimize the gradient of the error, typically related to error in flux,
in the L, norm as ‘optimal methods’ (distinct from optimal convergence rates). In
one dimension, discrete values of the error, evaluated at the nodes, can be related
to integral norms. Linear finite element functions that nodally interpolate the exact
solution are optimal in the sense mentioned above. (There exist useful alternative
characterizations of optimality.) Thus, nodal exactness is a bona fide measure of the
performance of linear finite elements. The motivation for pursuing this issue is that
in one dimension nodal values are often relatively easy to calculate and appraise, and
hence nodal exactness, when achievable, is a desirable goal in method design.

This evaluation of the numerical solution on its own may, however, be insufficient.-
Consider a problem with a highly-oscillating exact solution. A computational method
that yields the nodal interpolant is indeed optimal, but the solution can be quite
misleading if the oscillations are not properly resolved. Figure 5.2 demonstrates the
difficulty that arises in interpreting an under-resolved numerical solution. The integral
measure is inappropriate for such cases. Instead, physical considerations based on the
particular class of problems being addressed must be taken into account. For problems
governed by the Helmholtz equation in exterior domains we want a solution that yields
an accurate representation of the magnitude (related to acoustic energy) and phase of
physical phenomena that are resolved, as well as the flux at the wet surface. The effect
of unresolved features on the numerical solution should be minimized, particularly
when dealing with problems that involve multi-scale phenomena. ,

Remarks: Sufficient, or proper, resolution of a wave by a numerical mesh is not an
objective measure. We shall refer to ten linear elements per wave (kh = 7/5) as
“acceptable resolution,” since this is the guideline often used by numerical analysts.
The “limit of resolution” will be defined as four linear elements per wave (kh =
7/2), since beyond this value the finite-dimensional functions do not even possess the
required minima and maxima to model the physical features (although it is possible
to envision as few as two elements per wave crudely approximating such phenomena).
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Figure 5.2: Under-resolved piecewise linear interpolant of an oscillatory function.
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Figure 5.3: Phase error of the Galerkin formulation (0 < kR < 7).

Rk

5.2 Plane Waves

First we wish to characterize the behavior of the numerical solution in the interior of
a mesh. For this purpose we consider plane waves in an infinite mesh, so that only
interior stencils need be investigated. .
Galerkin: The performance of Galerkin solutions is conveniently characterized in
terms of the numerical parameter o* := (kh)?/12. When the exact solution is a
propagating wave (" > 0) there are two cases: For o* < 1 the magnitude of the
solution is correct, but there is a phase lag of the approximate wave number k", see
Fig. 5.3. The range in which the solution has the correct magnitude corresponds to
CO0<ER<T (8 0<kh<VI2=x 3.46). As o” takes on values larger than one the
~ solution decays. : »

Remarks.

1. The effect of increasing the wave number can always be balanced by mesh
refinement since the Galerkin solution to this problem depends only on the
parameter o,

2. The Galerkin method appears to be pointing out the appropriate strategy
for handling unresolved waves, namely damping the solution, but starting the
damping at too coarse a resolution (at kh = v/12 > 7 < ot = 1, i.e., less than
two elements per wave, well below the limit of resolution for which o & 0.21).

The performance of Galerkin solutions in the case of exponential decay (" < 0)
has already been studied in [34] and is reviewed here for completeness. As long as
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ot > —1/2 there is no conceptual problem. However, for o* < —1 /2 there are

spurious oscillations. These oscillations are localized to the neighborhood of the
boundary layer and do not pollute the entire solution. This is a clear manifestation
of degradation of H'-stability, while maintaining stability in the L, sense. i.e. the
solution itself is approximated well, but its derivatives are approximated poorly.

In summary, the Galerkin representation of the plane wave is good in the range in
which physical phenomena are well-resolved, but degrades outside of this range. The
mesh needs to be refined as the wave number or decay rate is increased to maintain
solution accuracy. Subject to this condition, there is no upper limit on the allowable
wave number at which a good approximate solution can be obtained.
Galerkin/least-squares: For a mesh of linear finite elements the Galerkin/least-squares
equations may be obtained from the Galerkin equations by replacing o with agrs ':_=
a™(1 — 7k?). The choice of

11— cos(kh)

. 1
acLs = 3 2 + cos(kh) (5.1)

- leads to a method for which the discrete solution is nodally eract in the entire range
of phenomena under consideration, regardless of mesh refinement. In the propagation
region, (5.1) leads to 0 < agrs < 1 which results in

1——1737162_{1 Vo' >0 (5.2)
84

We may thus view the nondimensional parameter 7k? as oscillating around 1 — 25

5
Reflecting this mean value with respect to o” yields a valid lower bound for 21?he
~decay region as well, and the upper bound may simply be extended from the region’
of propagation. The precise behavior of 7k?, as well as these simple expressions, is
~ depicted in Fig. 5.4. We wish to point out the smooth transition between the decay
and propagation regions. The parameter 7% vanishes at o* = 0 (which is appropriate
since the Galerkin method is optimal for this case) and it has a slope of —1 at a* = 0.

It asymptotically tends to one for both extreme values of a”.

Remarks.

1. A Galerkin/least-squares method is quite different from a “modified wave num-
ber approach,” despite some superficial similarities. The replacement of o* by
agrs 1s performed only for the sake of convenience in analyzing the method,
and it holds only for linear elements on a uniform mesh. In general, this is not
equivalent to modifying k in the governing differential equation. For higher-
order elements the GLS method cannot be obtained from a Galerkin formula-
‘tion simply by substituting agrs for . Moreover, consistency in the sense
- described earlier is maintained by appropriate treatment of the right-hand side,
as in eq. (4.3). This guarantees that the convergence properties will improve
as the order of interpolation is increased, and superior results for all orders of
interpolation can still be expected when source terms are present.
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Figure 5.4: Nodal exactness via the Galerkin/least-squares method, see (5.1).

2. From the point of view of method design it is convenient to determine agrg to
obtain the desired performance. However, the corresponding 7 must always be
examined to guarantee feasibility of implementation. For non-uniform meshes,
the parameter 7 which is defined on the basis of eq. (5.1) is evaluated on the

element level by considering % to be the individual element size rather than the
mesh parameter.

The aforementioned bounds suggest simple approximations to achieving nodal
exactness in the region of decay, which are easily extended into the region of
propagation beyond the limit of resolution, up to o* = 1/4. The simplest is

| . .
Tk = paT " <1/4 : (5.3)

The approximation in the range of higher decay rates may be improved by

oy {1-}-;;(—,,, ol < -1
= ah

cv"_—17 —]. S ah S 1/4 (54)
or by
1455, o<1
Tk? = { —30", -—1<at<0 (5.5)
f£-. 0<aot<1/4
which is smoother at of = —1 (see Fig. 5.5). These last two approximations

correspond to agrs = —1/2 in the range of higher decay rates, cf. (5.1). All
approximations maintain continuity with (5.1) at o* = 0 and may be inexpen-
- sively employed in practical implementations.
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Figure 5.5: Approximations for nodal exactness via the GLS method, egs. (5.3)-(5.5).

5.3 The Neumann Model Problem with a DtN
Boundary |

We now consider a model problem with a Neumann boundary condition on the wet
surface of the plane radiator and the DtN boundary condition on the artificial bound-
ary. Nodal exactness at all nodes is no longer attainable.

Galerkin: Exact solutions to boundary-value problems for the reduced wave equation
in unbounded domains are unique; whereas in bounded domains such solutions are
not unique at characteristic wave numbers. Due to the contribution of the DtN
boundary condition, which represents the effect of the unbounded domain, there are
no instabilities in the Galerkin solution. From the point of view of functional analysis
this implies that stability is ensured by the presence of the DtN boundary operator,
* by, despite loss of positive-definiteness of the sesquilinear form a. Nevertheless, the
quality of the Galerkin solution deteriorates as the absolute value of o increases.

In the region of propagation, outgoing and incoming waves (of incorrect phase,
see Fig. 5.3) are linearly combined to satisfy the boundary conditions, resulting in
spurious modulation of the amplitude. The entire solution is damped out for large
values of o*. However, before this occurs, the amplitude of the numerical solution is
larger than the exact value throughout the mesh, and although the relative error is
~ always bounded, it can be of several orders of magnitude. There is also severe phase
error as o increases. For more details see [57], and subsequent numerical results and
discussion.

Similarly, in the decay region, the error in the rate of decay brings about a linear
combination of the part of the solution that is decaying with the part that represents
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growth. Spurious oscillations in the solution start at a® = —1/2. The magnitude
of the oscillations does not grow monotonically as a* — —cc, but rather grows and
then subsides as the entire solution becomes trivial, losing its capability to capture
the physics of the problem altogether.

Galerkin/least-squares: In this case nodal exactness can not be achieved with the -
type of least-squares methods presented. Consequently, in the propagation region, it is
impossible to obtain correct values for both the phase and the magnitude. We examine
solutions obtained by applying the Galerkin/least-squares method that was nodally
exact on the infinite mesh, defined via (5.1). For this method in the propagation
region the phase is exact and the magnitude is quite accurate over a wide range of o”.
The error in magnitude is virtually undetectable in the range of acceptable resolution
(up to ten elements per wave, o* < 0.033) and accuracy in magnitude representation
1s vastly superior to that of the Galerkin solution up to the limit of resolution (four
elements per wave, o < 0.2). The maximum error in magnitude within this range for
Galerkin is approximately 20%, whereas for this Galerkin/least‘squares method it is
about 5%, see [57]. Examples of the performance of these methods on the Neumann
model problem are subsequently presented.

In the decay region the rate of exponential decay is exact. The nodal values at all
of the nodes except for the one on the wet surface are quite accurate, and vanish in
the limit o” — —oco, as they should. The oscillations that were seen in the Galerkin
- solution are precluded. .

Phase accuracy is the motivation for the method defined via (5.1). Other design
criteria may be employed, leading to alternative Galerkin/least-squares methods. In
[57] a version of Galerkin/least-squares that minimizes the gradient of the error in
the L, norm is derived for a single-element mesh. Although the resulting method
is indeed optimal for this case,.the generalization of this idea to larger meshes is
almost prohibitive. However, this method is suitable for certain interaction problems

in which sufficient discretization of the fluid contained within the DtN boundary is -

possible with a single layer of elements. An alternative in which nodal exactness at
the wet surface for any uniform mesh is achieved by the simple expression

1—1+/1—4a"
2

is also presented in [57]. The use of this GLS method has a very important conse-
quence: In the propagation region the outgoing wave satisfies the boundary conditions
and in the region of decay the decaying part of the numerical solution does the same.
As a result, the magnitude of the solution is ezact in the range of propagation up to
o < 1/4 (where agrg is real), leading to no error in the acoustic energy.

Numerical ezamples: In numerical testing the Galerkin method was found to require
wave resolution of about eight elements per wave (the standard guideline that is fre-
quently employed by numerical analysts is ten elements per wave), whereas solutions
obtained with Galerkin/least-squares formulations were accurate to four elements
per wave [57]. As an example of numerical solutions for the Neumann model problem
with a DtN boundary we show results in the propagation region over the unit interval
discretized by a uniform mesh that consists of ten linear elements. The Neumann

agLs = (5.6)
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Figure 5.6: Neumann model problem with a DtN boundary condition: propagating
exact solution (" = 1/10, six elements per wave).

boundary condition is enforced on the wet surface (z = 0) and the artificial boundary
isat z = 1. For a* = 1/10 we approach the limit of resolution (six elements per
wave, which is between the limits of the two methods, Fig. 5.6). As expected, the
Galerkin solution exhibits error in both magnitude, and in phase, which causes the
loss of nodal accuracy to become more noticeable towards the DtN boundary. This
is an indication of insufficient wave resolution by the numerical mesh. The Galerkin
solution would improve with mesh refinement. There is no apparent error in the
Galerkin/least-squares solution. Since far-field solutions are obtained by the DtN
method from the numerical solution on the artificial boundary, the high degree of
accuracy exhibited by the Galerkin/least-squares solution on the artificial boundary,
in comparison to the Galerkin solution, is extremely important.

Damping of unresolved waves: The approximations in the region of decay to the
Galerkin/least-squares method that provided phase accuracy, (5.4) and (5.5), indicate
a scheme to provide damping of unresolved waves for the Neumann problem. By fixing
agLs = —1/2 after a set cut-off value of the numerically nondimensionalized wave
number, e.g., the limit of resolution kh = /2, we obtain a Galerkin/least-squares

method with 1
2 __
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Figure 5.7: Neumann model problem with a DtN boundary condition: unresolved
propagating exact solution (o =1/2, ¢* = ¢./3 on T}).

For any uniform mesh .

ho_ —hh / 3, on h . 5.8
o = {0, in ) ( ) )
1.e., the solution vanishes over the entire domain except for the first element, for which
it is imaginary. This implies an approximation of the flux on the wet boundary, viz.,

¢ o= %/3 on Ty (5.9)

Solutions thus obtained maintain this character as the nondimensional wave number
is increased indefinitely. The example depicted in Fig. 5.7 demonstrates damping
of unresolved waves (o® = 1/2, beyond the limit of resolution). As predicted, the
solution vanishes over the entire domain except for the first element, for which it is
imaginary, approximating the flux on the wet boundary.

To summarize this chapter, we have reviewed the framework for robust finite ele-
ment methods for problems of acoustics in exterior domains, including the inhomoge-
neous Neumann problem. Singular behavior is precluded in finite element models that
are based on the DtN boundary-value problem. The Galerkin /least-squares method,
with 7 defined via (5.1), is accurate to the limit of resolution of four elements per
wave and in the entire range of decay. Strong damping of numerical solutions for
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physical phenomena that are not resolved is provided by (5.7). Superior behavior is
thus exhibited in the entire range of propagation and decay.

5.4 Higher-order Elements

In recent years, there has been a resurgence of interest in the use of hierarchical

p-version finite element and spectral elements to obtain high-resolution numerical

solutions for structural acoustics. High-order finite element discretizations display

frequency bands where the solutions are harmonic decaying.waves. In these so called .
‘stopping’ bands, the solutions are not purely propagating (real wavenumbers) but

are attenuated (complex wavenumbers). In order to interpret the solution within the

stopping bands, the standard dispersion analysis technique is extended to include

complex wavenumbers. The results of the complex wavenumber dispersion analysis

presented in this section are drawn from Thompson and Pinsky [143, 144, 147]. By

allowing for complex wavenumbers, a complete characterization of high-order finite

element discretizations has been obtained. Three alternatives are considered: (i) hi-
erarchic p-version elements based on Legendre functions, (ii) new hierarchic Fourier
elements based on sinusoidal functions, and (iii) spectral elements based on Lagrange
interpolation in conjunction with Gauss-Lobatto quadrature. Practical guidelines for
phase and amplitude accuracy in terms of the spectral order and the number of ele-
ments per wavelength are reported. Results from this analysis provide a guide for the
design of p- and hp-version adaptive schemes, high-order preconditioners for iterative
solution methods, and the selection of optimal Galerkin/Least-Squares (GLS) mesh
parameters for elements using high-order basis functions. Further results are reported
in Thompson and Pinsky [143, 144, 147].

5.4.1 Higher-order approximations

Consider the finite element approximation,
p+1

= Na(¢ O¢  E€l-L1] (5.10)

a=1

. where N,(£) are shape functions with compact support defined in the local element

coordinate £, and p is the spectral order.
Upon introducing (5.10) into the Galerkin least-squares variational equation (4.4)
we obtain the following symmetric element impedance matrix,

8¢ = [s&] € RPHIX(PH) 4 p— 7. p 4 (5.11)
s = k° — (1 — 7k*)k*m® + 7k° + kK (5.12)
where k£ = w/c and
b = (Naz, Nyga,
Mgy = (Na, Npa.
k% = (Nags» Nooo)a,
(

Na Wy Nb)ﬂc + (Naa Nb,:r:z‘)ﬂe




Finite element methods for strucural acoustics e T 1

and the L, innér product is defined as.
h f1 i
(Na, No)a, = 5/1N,,Jv,,d5 O (5.13)

where h is the elément length. In the above expressions, k¢ and m® are the local stiff-
ness and mass matrices emanating from the Galerkin formulation, while the matrices
k¢ and ke are additional contributions obtained from the Least-Squares terms. -

P-version hierarchic Legéndre elements

Let S C H be the finite element subspace of continuous piecewise polynomials'of
degree p denoted by P?. The basis functions used in the p-version finite element
method are obtained by starting with the standard linear nodal shape functions,

N©)= 31466 a=12 (5.14)

and then adding in a hierarchical fashion internal shape functions defined in terms of
integrals of Legendre polynomials.

1
|| Pa—zl|

N,(¢) := /j P,_»(&"de', a=3,4,---,p+1 (5.15)

with the norm of the Legendre polynomial,

2 .
PP =—"— 1
1Pucall? = 52 (5.6)

These functions are constructed such that N.(£1) = 0. As a result of this property

the variables ¢; = ¢*(—1) and ¢, = ¢"(1) define discrete nodal variables, while

the values ¢,,a > 3 compose a set of internal _variables. The derivatives of these
hierarchical functions form an orthonormal basis with the property,

/1 dN, dN, |

L dE g L=0e ab=3:p+1 - (5.17)

As aresult of this orthogonality property, the local element stiffness matrix is diagonal
beyond @ > 2. Details on the form of these matrices are given in [143]. The element
matrices are hierarchic in the sense that the matrix corresponding to S* is embedded
in the matrix corresponding to SP*1.

New hierarchic Fourier elements

In [144, 147] a new hierarchic trigonometric basis is constructed starting with the
standard linear nodal shape functions defined in (5.14) and then adding to these in a
hierarchical manner internal shape functions defined in terms of the Fourier modes,

Na(€) = Za—_2—2)—7rsin((a —)(1+61/2)  a=34,- . ptl (5.18)
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These functions satisfy N,(£1) = 0 and the orthogonality properties,

2 1 dN, dN,

1
i Y
/.1A“N vt (a—2)7r5°*” -1 dE dE

e = 6, | (5.19)

As a result of this normalization, the local element stiffness matrix is identical to the
stiffness matrix obtained with the Legendre polynomial based elements However,
the use of Fourler modes changes the mass matrix.

Spectral elements

Higher-order elements based on Lagrange interpolation polynomials in conjunction
~ with Gauss-Lobotto quadrature lead to the so-called ‘spectral elements’ when used
with a high spectral order p. In the spectral element method, the solution variable
¢" is expanded within each element in terms of high-order Lagrangian interpolants,
N,(€) € PP:

{Nu(€) € PP, No(&) = bap Va,b € {1,---,p+1}} (5.20)
evaluated at p + 1 Gauss-Lobatto points such that & = —1 and £,4; = 1, with the
other points being obtained as the roots of the derivative of the Legendre polynomials.
In this case,.the solution variables are all nodal values, ¢, = ¢"(£,), and the basis is
not hierarchical. By choice of Gauss-Lobatto quadrature, the elemental mass matrix
is underintegrated and diagonal.

5.4.2 Complex wavenumber Fourier analysis

In this section the complex wavenumber Fourier analysis technique developed in [144,.

147] is used to investigate the dispersive and attenuation properties of higher-order
finite elements. The method employs only a minor modification to the technique of
real wavenumber analysis but is completely general, and can accommodate any finite
element discretization and spectral order. This extension of the usual procedure
involves only a slight modification to the standard Fourier analysis yet allows for a
complete characterization of the ‘stopping’ band phenomena found in higher order
finite element discretizations — a characterization that has previously escaped other
. analysts.

Before the assembly of the finite element equations, for hierarchical elements,
it is necessary to decouple the degrees of freedom associated with the interior of
the element domain from the element dynamic stiffness (impedance) matrix. The
dynamic stiffness matrix s° is partitioned into the following matrix block form,

&€ = [ S;} 812 J € R(p+1)X(P+1) . (521)
8§19 S22

The matrix partition sy € R(P-Dx*(p=1) corresponds to interactions among internal
shape functions, s;; € R¥*(P~1 5 the coupling matrix partition due to interactions
between 1nternal shape functions and nodal sha,pe functions, and finally, s,; € R**?
corresponds to interactions among the nodal shape functions N; and N,. After static
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condensation and assembly a tridiagonal system of linear equations in terms of nodal
variables is obtained. The the nth equation of this system takes the form (see [147]
for further details):

Gi(a)dn-1 — 2G3()¢r + G1(@)Pns1 = 0 (5.22)

In this difference stencil, the coefficients G;(a) and Gy(«) are polynomials of degree
2p in the nondimensional frequency:

a = wh/c ' ‘.  (5.23)
An exponential solution to (5.22) is assumed having the form:
¢n = A g, =nh (5.24)

.where k" € C is the complex valued numerical wavenumber and i = v/ —1. Substitu-
tion of (5.24) into (5.22) results in the wavenumber-frequency relation,

cos(f) = Aa) (5.25)
where o »
Ma) = G:Eg; (5.26)

and f is the normalized discrete wavenumber:
B=k"n - (5.27)

At this point, we depart from the standard finite element dispersion technique in
which real frequency roots of (5.25) are sought for a given real wavenumber. Instead,
we seek all the wavenumber roots of (5.25) for a given real frequency. The complex
roots € C, of (5.25) are found using the complex arc cosine; (see [143, 147] for
details. SR , : .

5.4.3 Dispersion and attenuation results

In this section we discuss the complex wavenumbers that arise from the Fourier analy-
sis of high-order finite elements. It will be shown that the finite element characteristic
equation (5.25) admits pure real wavenumbers, (propagating solutions) only when the
frequency falls within a finite number of bands called passing bands. The number of
passing bands is equal to the spectral order p of the elements in the mesh. In addition
it will be shown that there are p stopping bands where the wavenumbers are complex.
The results in this section apply to Galerkin finite element discretizations with 7 = 0.

For a uniform mesh of p-version finite elements with spectral order (p = 2),
the frequency dependence of the real and imaginary parts of k* € C are plotted in
Figure 5.8. In this case, there are two passing bands: one for frequencies between
0 < @ < a; and one for frequencies between a; < @ < am.,. Within these bands,
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Figure 5.8: Frequency spectrum comparing quadratic finite element approximations
obtained from Galerkin method: (a) Real wavenumbers, (b) Imaginary wavenumbers
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Figure 5.9: Amplitude spectrum for quadratic elements

there is a purely propagatihg solution with |A| < 1 and the characteristic equation is
satisfied by, :

Re(B) = cos™'(}), and  Im(8)=0 (5.28)

The dispersion curve in the lower passing band is called the acoustical branch and
the upper passing band is referred to as the optical branch.

In the frequency range between these two passing passing bands, a; < a < aj,
there is one frequency band where the numerical wavenumbers are complex. In this
band, |A| > 1 and the characteristic equation is satisfied by,

Re(f) =7, and Im(B) = cosh™'(-)) (5.29)

This complex wavenumber band is called a stopping band because in this frequency
range, the real part of the wavenumber is constant and the Imaginary component
results in an attenuated wave solution with an amplitude decay proportional to the
exponential of the imaginary wavenumber. ’
Above the cut-off frequency, a > 'amw, A > 1 and the characteristic equation is
satisfied by, ‘

Re(B) = 27, and Im(B) = cosh™!(}) : (5.30)

In this case, the solution propagates with a fixed wavelength equal to the limit of reso-
lution ~ one quadratic element per wavelength or Re(3) = 27 with strong exponential
amplitude decay from node to node along the mesh.

The amplitude spectrum for p = 2 is plotted in Figure 5.9. The amplitude ratio is
constant in the first passing band (acoustical branch) up to the complex wavenumber
band where the imaginary wavenumber components produce an amplitude decay. In
the stopping band, the amplitude is attenuated until a minimum is reached and then
increases back up to the exact ratio of one. The amplitude ratio continues to be
exact throughout the second passing band (optical branch) until it reaches the ‘cut-off
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where it is strongly attenuated. The cutoff frequency for the Spectral element falls
well below that of the Legendre and Fourier elements.

Invoking a signal processing analogy, the character of this amplitude spectrum
illustrates how the p-version finite element mesh acts as a band-pass filter - allowing
propagation of all frequencies in the passing bands, while weakly attenuating frequen-
cies in the complex wavenumber band, and strongly attenuatmg frequencies above the
cut-off frequency. .

As the spectral order is increased to p = 3, the spatial resolution limit extends to
Re(B) = 3. Figure 5.10 shows that there are 3 passing and 3 stopping bands present
in the frequency spectrum. The first complex wavenumber band occurs when Re(3) =
m.  The frequency range for the first stopping band is very small and appears as a
small perturbation in the frequency curve for the imaginary wavenumber component
at approximately @ = 7 , see Figure 5.10. The second stopping band occurs when
the real wavenumber component reaches 27 and is much larger, with large imaginary
wavenumber components present. v

As a result of these complex wavenumber bands, we observe the amplitude attenu-
ation characteristics shown in Figure 5.11(top). The amplitude ratio is again constant -
in the passing bands up to the first complex wavenumber band, where there is a very
small attenuation loss. Isolating this frequency region in Figure 5.11(bottom), we
observe that the maximum amplitude error is only 2.5 percent for the Spectral el-
ements and only 1 percent for Legendre and Fourier elements. Thus in this first
complex wavenumber region waves propagate with constant wavenumber Re(8) and
only a very small amplitude decay. The amplitude attenuation in the second complex
frequency band is very large and in practice the element size A should be chosen to
avoid this nondimensional frequency range.

Results for spectral orders p = 4 and p = 5 are given in [147]. For nondimensional
frequencies up to o = (p — 2)7, the dispersion curves approximate the exact line with
slope one. As the nondimensional frequency increases, the Legendre and Spectral
elements exhibit loss of accuracy in the upper two optical branches. In contrast, the
Fourier element maintains accuracy up to @ = (p — 1)7.

_ In conclusion, the following dispersive properties are observed: (1) There are p

passing bands and p stopping bands, (2) the limit of resolution occurs at Re(f) =
. 7p. In addition, the amplitude atténuation in the first few complex wavenumber
(stopping) bands is very small and converges in the limit of large spectral orders
to the exact amplitude ratio of one. Thus for large spectral orders the first few
stopping bands are not of practical significance. As a general trend we observe that
the amplitude error is greater for the Spectral elements than the Legendre and Fourier
elements and the cutoff for Spectral elements always occurs before that of Legendre
elements.

Analysis of phase error

Figure 5.12 shows the phase accuracy of the Galerkin finite element approximation
versus a nondimensional real wavenumber (3/7p). Throughout the acoustic branch,
the phase error converges to the exact solution as the spectral order is mcreased
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Clearly, in the practical range 0 < k*h/7p < :5 the higher-order p-type elements
exhibit increased accuracy compared to low-order finite elements. for the same number
of degrees of freedom. In the optical branches, the dispersive errors increase. The
use of trigonometric shape functions in the Fourier elements decreases the phase error
found in the optical branch as compared to the Legendre case. '

The convergence rate is investigated by examining the phase as the number of
solution variables per wavelength is increased. In general, in the range of resolution,
the phase error for spectral order p is of the order, '

k" | ‘ |
— —1=0@kn» - (8:31)

with the nodal solution, _ ,
b = AcHenl1ZO(HR (5.32)
This result is verified for spectral orders of p = 1,2,3 in F igure 5.13, where the slope
of the lines show the rate of convergence of the phase error to be 2p. Additional
results are reported in [147].

Analysis of attenuation

Although the amplitude from node to node is exact for frequencies within the passing
bands, it is possible for the high-order finite element solution to exhibit amplitude
attenuation at points internal to physical nodes. Analysis of amplitude attenuation at
points internal to the physical nodes is investigated by examining quadratic elements
of order p = 2. In this case, the dynamic stiffness matrix is assembled without
condensation and the internal variable is written in terms of the center point. The
resulting stencils related to equations n and n 4 1/2 are of the form,

S(a) = (K —a*M) =0 : (5.33)
- and K and M are (2 x 5) stiffness and mass coefficient matrices, with solution vector,
| ¢"=(bum1 bno1p bn Gtz Gan ) o (5.39)

Allowing for different amplitudes at the exterior nodes n, and element center nodes.
n £ 1/2 we assume the complex exponential solutions,

$n = AeP™ (5.35)
Pny1/2 = A2¢iﬂ("+1/2) (5.36)

- Substitution of the above two solutions into (5.33) results in a symmetric character-
istic matrix. Solving this system, the amplitude ratio r = Az/A; is found. Further
details for this analysis are given in [144]. '

Figure 5.14 shows the amplitude ratio plotted as a function of wavenumber. The
curves lying above the ratio of one are acoustical branches, while those below are
optical branches. For quadratic Legendre elements, amplitude attenuation is insignif-
icant for k*h < 2r/3 ( three elements per wavelength), while for quadratic Spectral
elements amplitude attenuation is insignificant for kbh < 7/2 ( four elements per
wavelength). Results for Fourier elements are similar to the Legendre elements. The
physical interpretation of this result is discussed at length in [143].
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5.4.4 Illustration of the complex wavenumber band

The role that complex wavenumbers play in the practical solution of physical bound-
ary value problems is revealed in the time-harmonic solution for the Helmholtz equa-
tion with Dirichlet boundary conditions ¢(0) = & and ¢(L) = 0, where L is the length
of the domain. After discretizing with N uniformly spaced elements of length h, it
can be shown that the finite element solution 1is,

- osin(k*(L —z,))
¢ (@n,w) = ¢ sin(k*L)

n=0:N (5.37)

where k" is the numerical wavenumber defined in (5.25) and L = Nk and z, = nh.
The important point here is that this wave solution consists of the same numerical
wavenumbers present for the infinite domain found by our Fourier analysis except
that both outgoing and incoming waves are present. In Figure 5.15, the response for
a frequency in the complex wavenumber stopping band is plotted. It is clear that
the response has a propagating component fixed at Re(k*h) = 7 corresponding to
two elements per wavelength, while the imaginary component manifests itself in the
amplitude decay. The connection between the dispersion curves derived from the
Fourier analysis and the discrete eigenfrequencies of this model problem is discussed
in [143] together with an example of how the complex wavenumber analysis can be
used as a tool to improve the solution for vibration problems. '
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5.4.5 Optimal GLS parameter for quadratic elements

With the aid of the complex wavenumber analysis technique described in Section 5.4.2
the optimal definition of 74,4 for quadratic p = 2 basis functions may be obtained.
By substituting the exact wave number into the finite element dispersion relation for
quadratic elements, and with the design criteria that the phase be exact k* = k, leads.
to a quadratic equation for the optimal value of 7,,,4. Defining the nondimensional
parameters « := kh, and 7 := 7k?, the following quadratic equation is obtained:

62722 + C]’/:' + Co = 0 (538)

where c;(a), j = 0,1,2 are frequency dependent coefficients defined in [143]. The
optimal GLS parameter Teuad is Obtained by solving this quadratic equation, for 7.
As described earlier, for quadratic elements there are two frequency ranges where
waves are allowed to propagate with real wavenumbers. In the above expression,
the minus sign is used for the range 0 < kh < 7 while a plus sign is used for the
range m < kh < 2w, where 27 is the limit of resolution for quadratic elements.
At kh = 7, there exists a discontinuity in the value of Tquad- 1his phenomenon
1s related to the ‘stopping bands’ present in the frequency-wavenumber spectrum
for high-order finite element discretizations where allowed waves possess amplitude
attenuation. Figure 5.16 plots the optimal 7,,,4 obtained in [143] together with simple
approximations based on fractions of the GLS parameter derived earlier for linear
interpolations. Comparing these results, a practical estimate useful for computation
is 0.25T{,’near.

Further details for the results obtained in this section are given [143]. Using the
technique of complex wavenumber Fourier analysis the optimum GLS mesh parameter
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for quadratic elements was derived. GLS finite elements for time-harmonic wave
propagation using higher-order basis functions require that a suitable definition of 7 be
obtained for each spectral order p. In this section, it was shown that GLS parameters
for elements with basis functions of high spectral order p can be approximated by
simple fractions of low-order GLS parameters. In particular, for quadratic elements
(p = 2), the value T = .257jineqr proves to be a useful estimate.




Chapter 6
Multidimensional Configurations

In Chapter 5 we considered simplified inhomogeneous radiation problems—radiation
loading of acoustic media by prescribed boundary conditions as induced by the vibra-
tion of a structure (thereby emphasizing boundary conditions of the Neumann type),
with particular reference to exterior domains. In this chapter this work is extended to
more general settings. The effect of nodal spacing and the performance of the meth-
ods proposed on problems with spherical-wave solutions is investigated. We examine
the performance of the methods proposed in multidimensional meshes. The general
convergence of solutions obtained by Galerkin/least-squares finite element methods
1s proved, with error bounds obtained for the case of unresolved waves, guarantee-
ing the performance of these methods on configurations of practical interest. The
performance of the methods proposed is validated by numerical examples.

6.1 Spherical Waves

In the following we examine spherical configurations to provide a more challenging test
of the performance of the numerical methods considered, since in this case propagating
solutions are of decaying amplitude. Spherical waves also provide a model for three-
dimensional problems on which to validate the performance of methods that were .
designed on basis of a plane-wave model.

We consider the domain to be discretized by a mesh of linear elements. In the
absence of source terms the exact solution is ’

¢ = ce*r ' ' (6.1)

where the constant is adjusted to satisfy either a Dirichlet or a Neumann boundary
condition on the physical boundary. Nodal values of the finite element solution are
denoted ¢4 = @(ry)

6.1.1 Nodal spacing

First we wish to characterize the amplification from node to node of numerical solu-
tions modeling waves with decaying amplitude, so that only interior stencils need be

53
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investigated. The Ath equation of the tridiagonal system for a Galerkin solution on
a uniform mesh, for which r4 = Ah, vields the stencil

[5(34%2 — 3A + 1) + 30" (104> =104+ 3)] 041
—2[5(3A% 4+ 1) — 6" (1042 +1)] ¢4
+[5(342+34+1) 4+ 30"(104%2 + 104 +3)] Gaa =0 (6.2)

In this analysis lower node numbers therefore correspond to pbints that are in the

~vicinity of a disturbance, i.e, a boundary or a source, and larger numbers represent

the far field. For A > 1 this stencil tends to the stencil derived for plane waves
in Chapter 5. ~Seeking solutions in which ¢4 ~ p?/(AR) we obtain a quadratic
polynomial in p, which represents the nodal amplification factor. It was noted in [3]
that this representation of the finite element solution is inappropriate for finite node
numbers when kh < 7, since then there are wide fluctuations in the values of the
coefficients of the stencil (6.2). The two solutions to the quadratic equation for p

- represent outgoing and incoming waves (or exponential growth and decay). Recall

that eq. (6.2) is an interior stencil and does not take into comsideration boundary
conditions, which separate physical solutions from nonphysical ones. By comparison
to (6.1) we see that nodal exactness would require p = ¢** However, solving the
quadratic equation for p shows that the Galerkin formulation yields different results.
We have seen from the study of plane waves that for o < 1 the Galerkin solution
maintains the character of a propagating plane wave, and decays beyond that value.
In the case of spherical waves the value of o* at which decay sets in varies from node
to node (Fig. 6.1). Nevertheless, we see that for o* < 1 the Galerkin solution does
maintain the character of propagating spherical waves (recall that this is well beyond
the limit of resolution). Within this limit '

2 A+1.5(3A2—3A+1)+30"(104% — 104 + 3)
el ,‘A—15(3A2+3A+1)+3ah(10A2+10A+3)
2 5+ 9ah
A—15(3A2+3A+1)+3a"(10A2 + 104 + 3)

>le#f =1 | (6.3)

i.e., the amplification factor on a uniform mesh is always overestimated by the numer-
ical solution. The error in nodal amplification is shown in Fig. 6.2, and for uniform
meshes is virtually insensitive to the wave number. The largest error of approximately
5% occurs at node 2 for kh = 0. The amplification error is more significant for higher
node numbers, since it is raised to a higher power in computing the amplitude, but
the error itself is lower, more than compensating for this fact (Fig. 6.3).

The amplitude error is not substantial, but nevertheless we would like to examine
the possibility of reducing it by appropriate nodal spacing We account for arbitrary
meshes by denoting the length of element e as A® :=r44; —r4, and seeking solutions
in which ¢4 ~ |p|™4/he*" 74 [r, where k" allows for a phase error in the numerical
solution, and, for convenience in the following analysis, & is the local mean element
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Figure 6.1: Limit of propagation in the Galerkin solution on a uniform mesh for
spherical waves: value of o at which decay sets. in.

length. Equation (6.3) is generalized for arbitrary nodal spacing
TA+41 he sin khhe—l
ra-1he"1 sin khhe . '
20(r% + rara—1 +rh1) + (kR™)’ (3r% 4 draray +3r%_))
20(7'214-1 +raara+ri)+ (khe)2 (Bris +4rapara +3r%)

lpl* =

(6.4)

For correct amplification we require |p| = 1. Recalling that for uniform meshes the
amplification was virtually insensitive to wave number, we simplify this expression
by considering the limit of well-resolved waves (kh — 0 which implies that k" — k,
so that sin k" may be replaced by k"h®, the first term in its Taylor series expansion
at 0). Exact amplification is obtained in this case when the nodal spacing satisfies

T8 = rapiTay (6.5)

which we term a ‘geometric mesh’. In a spherical configuration, if a wedge is dis-
cretized radially according to this scheme, the aspect ratio is equal for all elements.
Figure 6.4 shows the approximate error in amplification for the geometric mesh, ne-
glecting the phase error. This spacing improves the amplification factor considerably
for well-resolved waves. However, the error in amplification is significantly worse than
that of the uniform mesh for larger numerically nondimensionalized wave numbers,
particularly for larger node numbers (cf. F ig. 6.2). We therefore do not recommend
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Figure 6.2: Amplification error of the Galerkin solution on a uniform mesh for spher-
ical waves, from eq. (6.3).

the use of geometric meshes, except in the vicinity of disturbances. This conclusion
is borne out by numerical experience that indicates a deterioration in the quality of
solutions computed on a geometric mesh in comparison to uniform discretization.

. The amplification factor might be improved for lower wave resolution by consid-
ering the first-order correction to the Taylor series expansion for the sine function,
which yields

o ' 2
P AsiT AL — 7'34 - A1 (kh) (he _ he—l)
rh41 HTARITAZL + TS 6 — (khhe1 )?

but it is difficult to derive the nodal spacing that satisfies this criterion.

(6-6)

6.1.2 Phase accuracy

We wish to characterize the phase error for the region in which the numerical solution
is propagating, and examine the performance of Galerkin/least-squares, that was
designed by employing plane-wave models, for problems with spherical waves.

. For a uniform mesh we write

p=lple*™ (6.7)

The phase error in the Galerkin solution is shown in Fig. 6.5. The phase lag in the
far field (e.g., node 50) is virtually indistinguishable from the case of plane waves
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Figure 6.3: Amplitude error of the Galerkin solution on a uniform mesh for spherical
waves, adjusted for position, from eq. (6.3).

(node oo, cf. Fig. 5.3). As a matter of fact, the phase accuracy at lower node num-
bers is quite similar to the.case of plane waves as well. As a result we expect the
Galerkin /least-squares method, which was designed on the basis of consideration of
phase accuracy of plane waves, in general to perform quite well for this case too.
Recall that our representation of the finite element solution did not account well for
the behavior at small numerically nondimensionalized wave numbers. Despite the
indication in the figure to the contrary, we assert that the phase error vanishes as the
mesh is refined (as verified by the convergence proof in Section 6.3).

Employing Galerkin/least-squares considerably reduces the phase error in the en-
tire mesh, as expected. Figure 6.6 shows the phase error for the Galerkin/least-squares
method that provided an exact phase for the plane wave model (see Fig. 5.4). These
results are far superior to the phase error of Galerkin solutions. For example, for
node 5 at kh = 7/2 (which we termed the limit of resolution), the Galerkin/least-
squares phase error is approximately 0.5%, whereas it is approximately 8% for the
Galerkin solution (see Fig. 6.5).

6.1.3 Numerical examples

Consider a sphere of radius a pulsating uniformly. This example provides a model
for validating the performance of the methods proposed on three-dimensional config-
urations. The exact solution to the problem is given in (6.1), where the constant is
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Figure 6.4: Approximate amplification error of the Galerkin solution on a geometric
mesh for spherical waves from eq. (6.4).

adjusted to satisfy the boundary conditions on the physical boundary, and for the
purpose of the following calculations we set ¢ = 1. The DtN boundary is positioned at’
R = 2a, and the resulting computational domain is discretized with 10 equal-length
linear elements in the radial direction, taking advantage of spherical symmetry.

We examine Neumann problems in the region in which the exact solution is a
propagating spherical wave, similar to the Neumann problems with propagating plane-
wave solutions reported in [57].. With good resolution, approximately 18 elements per
wave (a" = 1/100, the wave length is approximately equal to the diameter of the
sphere), both the Galerkm and the Galerkin/least-squares methods give accurate
results (Fig. 6. 7). As o" is increased to 1/10 we approach the limit of resolution (six
elements per wave, Fig. 6.8, the wave length is over half the radius of the sphere)
and some deterioration can be seen (cf. Fig. 5.6 for the plane wave solution). As
expected, the Galerkin solution exhibits error in both magnitude, and in phase. The
latter causes the loss of nodal accuracy to become more noticeable towards the DtN
boundary. There is little error apparent in the Galerkin/least-squares solution. In
Fig. 6.9 we show the limit of resolution (a* = 1/5, four elements per wave, the
wave length is less than half of the sphere radius), and only the real part of each
solution is shown. The Galerkin solution has visibly deteriorated, but would i improve
with mesh refinement. The Galerkin/least-squares solution shghtly overestimates the
magnitude, but it is still extremely accurate. The phase lag in the Galerkin solution
is apparent in this figure. The high degree of accuracy of the Galerkin /least-squares
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Figure 6.5: Phase error of the Galerkin solution on a uniform mesh for spherical
waves. ‘

solution on the artificial boundary on all of these problems is particularly important
for computing far-field solutions by the DtN method.

Beyond the limit of resolution we employ the Galerkin/least-squares method that
damps the solution, defined in (5.7). The solution for o = 1 /2 (less than three ele-
ments per wave, the wave length is 1/4 of the sphere radius) is shown in Fig. 6.10. As-
in the case of plane waves (see Fig. 5.7), the solution essentially vanishes over the en-
tire domain except for the.element adjacent to the wet surface, thereby approximating
the flux on the wet boundary (2.6), in this case

¢h = ikh/3.2055 on T, (6.8)

543

In summary, the Galerkin/least-squares method was designed on the basis of
model problems of acoustics with plane-wave solutions. In this section we have ver-
ified that this method retains its advantageous features, namely a high degree of
accuracy to the limit of resolution of four elements per wave and damping of numer-
ical solutions beyond that resolution, on more challenging configurations. We now
proceed to prove convergence of the numerical solution to the exact solution with
mesh refinement.
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Figure 6.6: Phase error of the Galerkin/least-squares solution on a uniform mesh for
spherical waves.

6.2 Design of Galerkin/Least-squares Formulations

As discussed earlier, an important feature of Galerkin/Generalized Least-Squares
methods is the introduction of a local mesh parameter into the variational equation
that may be designed to provide accurate solutions with relatively coarse meshes;"
in effect extending the range of finite element solutions to higher frequency calcula-
tions. In the previous chapter this design goal was accomplished for one-dimensional
problems using dispersion analysis. While the GLS mesh parameter obtained from a

. one-dimensional analysis can be used for multi-dimensional applications, it was shown

in [145] that this parameter is not optimal in two- or three-dimensions. In this chapter
the selection of the optimal GLS mesh parameter for the multi-dimensional Helmholtz
equation is considered, and leads to elements that exhibit improved accuracy. The

_methods presented are mainly drawn from [143, 145, 152].

Optimal GLS methods for time-harmonic wave propagation in multi-dimensions
were first investigated in Thompson and Pinsky [145] with extensions to exterior
problems in [143, 152]. Although for any given direction of wave propagation, it is
shown that an optimal GLS mesh parameter can be obtained, in general, the direc-
tion of wave propagation will not be known a priori. To remedy this difficulty, a GLS
parameter is found which reduces phase error for all possible wave vector directions
over an element. By performing a multi-dimensional Fourier analysis the phase accu-
racy and directional properties of the Galerkin Least-Squares and Galerkin/Gradient
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Figure 6.7: Uniformly pulsating sphere ofi radius a, R = 2a, ka = /12, 18 elements
'~ per wave.
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Figure 6.8: Uniformly pulsating sphere of radius a, R = 2a, ka = v/120, six elements
per wave. ‘ :
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F igure.'6.9: Uniformly pulsating sphere 6f radius a, R = 2a, ka = /240, four elements
per wave.-
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Figure 6.10: Uniformly pulsating sphere'of radius a, R = 2a, ka = /600, damping of

unresolved waves (¢" o ¢, on T'y).
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Least-Squares solution is characterized over all wave vector magnitudes and direc-

tions.
To illustrate the ideas involved for the selection of optimal Galerkin Least-Squares

mesh parameters for multi-dimensional wave propagation problems, consider the
Helmholtz equation in two-dimensions:

Lo=V+kdp=—f in (6.9)

where k£ =.w/c > 0 is the wavenumber with wavelength 27 /k and Q is the spatial
domain of interest. The Helmholtz equation in IR? admits the plane-wave solution,

B(z,y) = elbrthn) (6.10)

where w and the wavevector components k, and k, are linked by the characteristic
equation, '

(%)2 = (keh)? + (kyh)? (6.11)

c
and h is a problem dependent characteristic length. This nondispersive relation is V
satisfied by the directional wavevector components k, = kcosf and k, = ksin#,
where the normal to the plane wave is oriented at angle @ relative to the z-axis.

Alternatively, the characteristic equation (6.11) can be obtained by a two-dimensional
Fourier transform from physical space to wave space through the transform operation,

8 1 foo oo .
Flkerky) 1= = /_ ) /_ _ Fla,y)e i dzdy (6.12)

The discrete counterpart to this continuous transform will be used as a tool for the
design of improved finite element methods for the solution of the two-dimensional
Helmbholtz equation.

6.2.1 GLS Dispersion Relations

‘Consider a uniform mesh of bilinear eléments,
R; = {(z,y) € R® = (mh;,nh,), (m,n) € Z} . (6.13)

with element sides A, in the z-direction and hy in the y-direétion. Finite element dif-
ference relations are obtained by assembling a patch of four bilinear elements. The re-
sult is the difference stencil associated with the interior node ¢, , = ¢*(mh,, nhy)|RZ —
C.

F(k) = Sémn—~1k*Mbp, =0 (6.14)

where S and M are the two-dimensional linear difference operators emanating from
the assembled stiffness (discrete Laplacian) and mass tensors respectively; see [152].
- The quantity . :

y:=(1—71k?) ' (6.15)

embodies the GLS mesh parameter 7.
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Figure 6.11: Direction of plane-wave with angle § measured relative to mesh lines.

The GLS finite element dlsperswn relations are obtained by assuming a plane-wave
solution propagating at an arbitrary angle relative to the mesh lines,

b = cilHERETHE by ) (6.16)

with ¢ = /—1. In the above, the directional wave vector components are denoted
k* = k*cosé and kh = k"sin# with numerical wavenumber k*. The normal is
orlented at angle 6 relative to mesh lines, see Figure 6.11. Substituting (6.16) into
(6.14) results in the GLS dispersion relation obtained in [143, 145, 152):

Fb, k' k) =S —y*M =0 (6.17)

ey Ty
This equation describes the relationship between the continuous wavenumber k = w /c
and the finite element discrete wave vector components k" and kh In this relation,

S and M represent the discrete Fourier transforms of the linear dlfference operators
S and M respectively. The transformed stiffness and mass operators are defined by:

S(kthe,kbhy) = 1,E2+ 1,k | (6.18)
M(kiho, kihy) = 1,1, - - (6.19)

where, B )
ke =2(1-f:)/k and  k2=2(1-f,)/h? (6.20)

fo = cos(klh;) = cos(k*h, cos 6)
fy = cos(k;’hy) = cos(k"h, sin 0)

1, =1~ o(kh)?  and  1,=1— S(kh,)’ (6.21)

6

[«=2F e
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The ¢ is a general quadrature parameter equal to 1 for exact Gaussian quadrature
and 0 for Lobatto quadrature. The mass operator M is referred to as consistent when
€ =1 and lumped when € = 0. ' _

The characteristic equation (6.17) describes the dispersive relationship between
the continuous wavenumber k¥ = w/c and the finite element discrete wave vector
components k" and k”. This relation depends on both the magnitude of the discrete
wavenumber k" := |k*| and the orientation of the wavevector 6.

6.2.2 Optimal GLS mesh parameter

The optimal least-squares mesh parameter 7 is obtained ‘by requiring the phase to be
exact, i.e. k = k" for any choice of wave vector angle § = §,. This requirement is
met by replacing k" with the exact wavenumber, k¥ = w/c, in the GLS finite element
dispersion relation (6.17), restricting k; = h, = h, and solving for y. With this design
criteria, the optimal 7 derived by Thompson and Pinsky [145, 152] is,

~

S(kh,8,)
k2M(kh,6,)
where § and M are defined in (6.18) through (6.21) with k* replaced with k = w/e

and 6 = 6. In particular, for exact 2 x 2 Gaussian integration, the expression for the
~ optimal GLS mesh parameter is,

k%=1

(6.22)

rk? = 1 — 6(4 — fr — fy - Qfxfy)
(kR)2(2+ f2)(2 + fy)

Selecting 6o = 0, (6.22) specializes to,

(6.23)

6(1 — cos kh)

rk? =1 — (kh)?(3 = €(1 — cos kh))

(6.24)

which yields exact phase for plane-waves directed along uniform mesh lines for either
. exact integration € = 1 or Lobatto quadrature ¢ = 0. When ¢ = 1 (6.24) specializes to
the GLS parameter derived by Harari and Hughes [57] in one-dimension. For compar-
ison the GLS mesh parameter  defined in (6.23), with ¢ = 1, designed to give exact
phase for plane-waves oriented along § = 0 (denoted 7o), § = 22.5 (denoted 7325),
and § = 45 (denoted 745) are plotted in Figure 6.12. At kh/x = 0.4, corresponding to
five elements per wavelength, the two alternative GLS parameters show a significant
difference.

6.2.3 GLS multi-dimensional dispersion analysis

In this section, the performance of alternate GLS mesh parameters based on definition
(6.23), with different choices of 6, are examined. The accuracy of the numerical
solution is assessed in terms of the phase error defined by,

ep(k",0) = &

= (6.25)
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Figure 6.12: Optimal GLS parameters designed to give exact phase for plane waves
directed along 6 = 0 (denoted 7p), and 6 = 22.5 (denoted 72 5).

In Figure 6.13 the phase error is plotted versus the angle of wave propagation;
comparisons are made with Galerkin (7 = 0) and GLS with (7525) and (70) at ten
elements per wavelength (top), and four elements per wavelength (bottom).- These
results clearly show that the solution with 7,5 gives exact phase for propagation
angles § = 22.5, while the solution with 7o gives exact phase for propagation angles
¢ = 0 by design. The phase error for GLS with 7o is a minimum (exact) at 6 = 0, and

- then increases to a maximum of 4 percent at § = 45 in the case of four elements per
wavelength. Phase accuracy is improved for 725, where the maximum error is only
2 percent at § = 0 and 6 = 45. By choosing the GLS parameter 755, the envelope
of the dispersion curves is centered around the exact result. As a result, the GLS
solution exhibits a maximum possible error |e,| of only 2 percent at four elements per

. Wavelength as compared t6 10 percent for Galerkin. At ten elements per wavelength,

GLS with 72,5 has a maximum possible error of only 0.5 percent, compared to 1.6

percent for Galerkin. :

In conclusion, firstly, it is clear that the least-squares addition with the family of
GLS parameters 7 defined by (6.23) substantially improves the phase accuracy of the
finite element solution for any given wave vector orientation 6. Secondly, we find that
when the direction of wave-propagation is not known a priori, or when it is varying
over the mesh, as will generally be the case, then 72, 5 is optimal. Further results for
GLS in two-dimensions including dispersion characteristics for other choices of T and
the effects of numerical quadrature are reported in [143, 152].

6.2.4 Three-dimensional elements

The selection of an optimal GLS parameter in three-dimensions is a simple extension
of the two-dimensional case. Consider a uniform mesh .of trlhnear 8-node bI‘le ele-
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Figure 6.13: Phase error using exact integration at (top) 10 elements per wavelength,

(bottom) 4 elements per wavelength.
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mients with element sides h. The optimal 7 in this case was obtained in [145. 143]
as,

2. 5(k~h,0,so)
=T kRN (kh 6, )

where S and M are the three-dimensional Fourier transforms of the stiffness and mass
difference stencils respectively,

(6.26)

§=1,LF+ 1,4+ 1,1,  and M =1.1,1, - (6.27)
Y T y Y Ty

k2=2(1-f;) and F2=2(1-f) and - k2=201-f) (6.28)

fz = cos(kzh) = cos(kh cos @ sin )
fy = cos(kyh) = cos(khsin0sin )
f: = cos(k;h) = cos(kh cos )

with polar angles § € [0,27] and meridional angles ¢ € [0, 7] measured relative to
mesh axis. By design, for ¢ = 0 mod 90, (6.26) specializes to the two-dimensional
case (6.22). S

6.2.5 Galerkin/generalized least-squares in two dimensions

For the Galerkin/Generalized Least-Squares (GGLS) method in two-dimensions, where
the added least-squares term is in the form of the gradient of the re51dual ie.
Vrk = V(Le" + f) with LéP = qSh + ¢ + k%¢", and f = 0, the dispersion re-
lation for bilinear elements is (see [143 145] for details): '

(kh)?1.1y, = (1 + 7k*)(1,k2 + 1,K2) (6.29)

which has the same form as the GLS characteristic equation (6.17) with the mesh
parameter replaced with v = ( 1+ 7k%)" !. In this case the optimal GGLS' parameter
derived in [145] is, . '
S e (kRh)*M (kh, bo)

S(kh, 8,)

Examining (6.29) we conclude that for bilinear elements on a uniform grid with f=0,
the phase accuracy for GGLS is identical to GLS over all wave vector orientations,
and no advantage results. This observation was also made by Harari [56] for the
one-dimensional case.

(6.30)

6.3 Error Analysis of the Galerkin/Least- squares
Method

The error analysis of the one-dimensional case was performed in [57]. Here we proceed
along similar lines in the analysis of the multi-dimensional Galerkin/least-squares




Finite element methods for:strucural acoustics -1

method with DtN boundary conditions, in the entire range of propagation and decay.
Special care is taken to generalize the following results to apply to problems with
pure Neumann boundary conditions on the wet surface. However it should be noted
that the analysis is valid for any combination of boundary conditions on the wet
surface for which the exterior acoustic boundary-value problem is well defined, and
by no means is it limited to Neumann problems. (Franca and Dutra do Carmo prove
convergence of their Galerkin/gradient least-squares method for the decay region [34],
thereby implying convergence of linear Galerkin/least-squares for Dirichlet problems
in this region.) In the following we do not account directly for the Neumann problem
with k£ = 0, which is not well-posed except in a limit sense. The Galerkin method is
suitable for this case, in accordance with all Galerkin/least-squares methods proposed,
for which 7k = 0 at o® = 0.

All the norms employed are induced by the L, inner products introduced previ-
ously (recall that the subscript denotes a domain of integration other than 2, and
is the union of element interiors). The values of the constants employed may vary in
specific instances of use.

6.3.1 Preliminary results

Stability of symmetric operators defined over real fields is usually expressed in terms
of their bilinear forms, an essential step leading to error estimates (e.g., [88, p. 54]).

Often, for operators defined over complex fields, stability is expressed in terms of the |

real part of the operator, which is then bounded by its modulus ([141, pp. 119-120}).
However, in order to account for Neumann problems we need to include the DtN
contribution, which therefore must first be characterized. We extend the analysis
of the DtN operator for the Laplacian in [98] to the Helmholtz operator, relying in
part on groundwork performed in [58]. The extension of any function w defined on
the artificial boundary 0Bp into the domain exterior to the computational domain
D so that it satisfies the homogeneous Helmholtz equation Lw = 0 in D and the
radiation condition at infinity is unique, and satisfies the DtN boundary condition on
OBp, (since this is the manner in which the DtN operator was determined). Thus

be(w,w) = /wadI‘
8Bg
= - / ww , dI'
9Bp
= / V- (@Vw)d2 - lim / @w,, dT
9Bg
= /(]Vw|2—k2|w|2) dQ - lim [ ww, dT (6.31)
D 8Bg

where the normal in the second line above is outward with respect to the computa-
tional domain () and the last line is a consequence of the fact that w satisfies the
homogeneous Helmholtz equation. ‘ :
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In the propagation region (k¥* > 0) functions are complex valued. and hence

2Imb(w,w) = bk(w w) — bi(w, w)
—_ _ 2 9
= = Thm / w2 + Keof?) dT (6.32)
8Bg

(6.33)

where the second .liné was obtained by (6.31) and the radiation condition, so that

2krlm/ jw,? + Kfwl?) dT
9Br

- —Im b(w, w)

v
o

(6.34)
(6.35)

By a theorem due to Rellich reported in [153, p. 56] it was shown in [58] that
Imbi(w,w) = 0 implies that w = 0 on OBg. This is corroborated by the investi-
gation in [58] of the coefficients of the DtN operator demonstrating that Im a, < 0.
We therefore infer that —Im bi(w,w) is.a norm on dBp, i.e.,

—Imb(w,w) 2> Cirlwllis, VYweV (6.36)

where Cir is a positive constant, with dimensions of inverse length, that depends
only on the geometrically nondimensionalized wave number kR. For example, in two
dimensions

be(w,w) = /wadI‘
dBgp .
2 oo 27
- R / w(E, 0) (E'an / cos (8 — 0') w(R, ¢') d&’) dé
0 n=0 0

2

n=0

95.37)

so that, by the Parseval equality, eq. (6.36) holds with Cxgr = 7 min{—Im o, }, which
justifies the assertion that Cir depends only on kR, see (3.3). The three-dimensional
case 1s similar. By direct inspection of the DtN kernels one can also show that

= RZan(

27
/ (R,8) cosnfdo
0 .

27 :
+| [ w(R,0) sinno do
0

Reb(w,w) > 0 Vwey (6.38)

In the decay region (k% < 0), by (6.31)

bp(w,w) = / (Vo)? + [Fw?) df + —— 2lkl lim / ((w,,)2.+|k2|w2) dr
D aBR
>

0 S (6.39)
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and thus V&2 < 0
bi(w, w) > Ckr Hw”?}BR Yw €V (6.40)

with Cxg = 7 min{a, }, implying that br(w,w) is a norm on 0B in the decay region
as well.

Poincaré-Friedrichs inequalities are usually stated for functions that satisfy homo-
geneous Dirichlet boundary conditions (see [61] and references therein for an overview
and proofs of inequalities of this type). We will make use of a specialization of a
Poincaré-Friedrichs inequality derived in [61] '

24+ CrrR)R

ol < EEERBE (19wl + Cunluls,) (6.41)

which holds for any boundary conditions on the wet surface, including pure Neumann
boundary conditions, i.e., when V = H(Q2).

The mesh dependent norm in which we prove convergence is induced by the fol-
lowing inner product

(0", ") s = acrs(w",¢") + Reby(w",¢*) — Im bu(w, ¢%) (6.42)

ly, .
o [w*l|ars = (w*,w" (6.43)
Willlers WL ars

We assume the following least-squares bounds of the Helmholtz operator hold Vk? €
R
Lthﬁthl% S k4'||wh[|2 S Ukh“ﬁwh[[% th € Vh (644)

This result, which is related to inverse estimates (see [61] and references therein) that-
are often employed in analyzing the error of finite element methods, see, e.g., [36, 76],
explicates the advantageous effect of the Galerkin/least-squares term in controlling
destabilizing terms. In support of the plausibility of (6.44) we note that [[Lw"||g is
indeed a norm since no piecewise polynomial satisfies the Helmholtz equation. - Fur-
thermore, the coefficients for several types of elements were calculated in [61] (for
example, see Fig. 6.14 for the case of biquadratic rectangles of sides , and h,). In
general, the coefficients 0 < Ly, < 1 < Uy depend on the numerically nondimen-
- sionalized wave number kh and the degree of interpolation. All the cases evaluated
were found to depend on (kh)*, i.e., to be symmetric with respect to (kk)? and behave
identically in propagation and decay. The coefficients may be characterized by their
asymptotic behavior

52: : 1 } as (kk)? — +o0 (6.45)
OV SR () Y S (6.46)

For all linear elements Aw"|q = 0 and hence Ly, = Uis = 1. From [61] it can be
shown that for || < 1 '

Ly < G (6.47)
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Figure 6.14: Least-squares bounds for biquadratic rectangles of varying aspect ratios.
(the bold lines correspond to the upper bound Uys).

where the positive, nondlmensmnal constant C; > 0 depends only on the degree of
interpolation [ (and is mdependent of k), and for la* > 1

Usw < C . (6.48)

See [61] for explicit definitions of Li, and Uy, numerical evaluations, and a discussion
. of results of this kind and potential implications in general settings.

Consistency condition (orthogonality of the error): Since the least-squares modifica-
tion to the Galerkin formulation was in terms of residuals, the consistency possessed
by the Galerkin method is inherited by Galerkin/least-squares. The Galerkin/least-
squares equation is thus satisfied with the exact solution as the second argument of
AgLs, and so, subtracting this from the equation in its original form leads to

AGLs(wh, e) =0 Yawh € Vh (6.49)

where € := ¢" — ¢ is the error in the finite element solution.

6.3.2 Stability condition

We treat the range of propagation and decay separately. In the range of propagation
(k* > 0) it is not obvious that (6.43) satisfies the positive- deﬁmteness requirement of
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a norm. We show that it does, subject to the condition that

. ‘Lkh (1 - ( Cde - ) s d Z (2 =+ CkRR)k2R/CkR

B> 2+ CkRR)k2R k>0
Ur (1 - T+ g::;if)k2R) , d<(2+ CyrR)K*R/Cyg
' (6.50)

Our previous analysis indicates that it is beneficial to select negative values of 7 for
low wave numbers (see, e.g., Fig. 5.4). We first examine 7 < 0, which, by (6.50), is
restricted to d > (2 + CxrR)k*R/Cir

Ile*llezs = IV@"I? = Kl ® + 7l Lot [f + Rebu(w®, wh) — Im by(wh, wh)
| > |[Vor|? = K1 = 71/ L) | + Cirllw* |35,
(2+ CirR)R Tk? S hyj2 hy2
> _——— -
> (1 ok (1= 7 | (V0" + Cunll|3s,)
1
> 5 (Ve + Cenllw*|35,) (6.51)

In the above calculation we made use of (6.36), (6.38) and the least-squares bounds of
the Helmholtz operator (6.44) on the second line, the Poincaré-Friedrichs inequality
(6.41) on the third line, and the first case in (6.50) on the last line. For r > 0, by
(6.36), (6.38) and (6.44)

I llrs = IV |? — k(1 — 762 /Ups) w2 + Crallw®||2s, (6.52)

When 7k? > Uy, this expression is obviously positive. Otherwise, by (6.41)

Mz (2+ CirR)R , Tk? hy|2 k)2
lioliss = (1 - EEER0R (1 T (rouspe s Cunlu,)

1 ‘ .
2 5 (IV"lF + Cunllwts,) (6.53)
The second case in (6.50) was used on the last line and, since 7 > 0, this result is
valid Vk? > 0. S

In the range of decay (k* < 0), (6.43) clearly satisfies the positive-definiteness
requirement of a norm for 7 > 0, but it must be shown to hold for negative values

of 7 (that correspond to 7k% > 0) as indicated by our previous analysis. In this case -

(6.40) and (6.44) imply
I lzs 2 1V = k(1 = 7&2%/ Lia) " ||* + Cirllw”||3Br (6.54)

which is obviously positive for 7k < L;,. When 7k% > Ly we again use (6.41) to
show

' (2+CkRR)R 2 Tk? »
> _— " L - hyl2 hi[2
z (1 nd ¢ \1 7 Iy ) ) (VA1 Cunliu® s,

1 R
> 5 (IVe!]? + Cinllw*|i2s,,) - (6.55)

lllw*|llELs
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The last line was derived by posing

‘ Cde '
2 < - K 6.56
7k* < Ly (1 (2+CkRR)k2R) <0 ( )
In s'ummary,.
et lliEes > 5 (IV*P + Cen lw*ll3s,) V" €V" (6.57)

subject to the bounds (6.50) and (6.56) in the propagation and decay regions, respec-
tively. .
Remark: In viewing the Galerkin formulation as a special case of Galerkin/least-
squares with 7 = 0, it becomes clear from this analysis that in the propagation region
stability could be lost as the wave number increases, since (6.50), the lower bound on
T, is violated.

We now show ellipticity of the sesquilinear form. In the region of propagation

|[Agrs(w®, wh)|? = (acLs(wh,wh)+Rebk(wh,wh))2+(Imbk(wh’wh))2-
1
> (asus(w',u?) + Rebut, w*) - Im by(w*,u?)”
1
= 2 (Ilwtligs)”  vut e vt (6.58)

Ellipticity in the decay region is more direct, viz.,

Acrs(w® wh) = ||lw?|||5Ls V't e V (6.59):

6.3.3 Interpolation estimates

The following results are based on standard interpolation theory (see, e.g., [21,
pp- 116-131 and-230-248]), with the assumption that-¢ is sufficiently smooth. Let
¢" € V" denote an interpolant of ¢, so that the interpolation error, 7 := ggh - ¢,
satisfies the DtN boundary condition. It is convenient to consider first the boundary
terms :

Rebi(n,n) = Imbi(n,n) <. vV2|bi(n,n)| |
< V2inlloss nalloss (6.60)

where the second line was obtained by the Schwarz inequality. Thus

linlllezs = IVall* = Klinl* + 7l|Lall + Re bi(n,n) — Im by(n,n)
< VIP + 1 lll? + 2ni 1 AnliE + 27 k4 il + V2 |inllos, linaIl6s61)

where 74 := max{0,7}.
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We estimate the interpolation error for |a”| < 1. imposing the bound |rk?| <
min{6[c*|, Ly1}. By (6.61)

h? 12|a?|
linlllees < 2|T+k2|12|ahlllAnH?z+IIVTIII2+ vz (2] +k2|+1”7]”2+\/_”77”35n 7.1l a8

< B*Aqlg + IVl + ;—3(201 + )linli? + V2 nllosy 7.4l

< Cyh? . | : (6.62)

where the positive constant C4, depends on the exact solution. In the above calculation
we used the definition of o” in the first line, and in the second line we used lahl <1
and the bound on 7 with (6.47).

For unresolved waves, Ia"l > 1, we impose |7k?| < Upy. By (6. 61)

2 < k2h2 A 2 k2h V 2 k2 2 k‘2 1 2
linlligzs < 2 (15 anl + ok IVl + 212l k] + D]

k2h2 .
+v2 oo Mllosz Innllass
[k 21h4 k2|2 '”’l h?

—5—CillAnllg + ——lIVall* + [#*](2C, + 1)|jn)?

\/_|k2,h2
——lInllesg lIn.lloss
< Jot| Cy B (6.63)

Again we used the definition of o” in the first line, and in the second line we used
lo*] > 1 and the bound on 742 with (6.48).

Remark: For linear elements Ly = Uy, = 1. Damping of unresolved waves as
presented in (5.7) violates the bounds on 7k? required by the interpolation estimates
n the propagation region. The bounds from the stability analysis, however, are
satisfied. This result is expected since the darnped solutions are stable, but have no
approximation capablhty

- 6.3.4 Error estimates

Let e" := e — 7 € V*. We estimate e* first

1
—=lle"llzrs < |Acrs(et, ")
V2

= |Agrs(et,e— 7])[

= |Aczs(e"n)|

acrs(e®,n) + Rebi(e", n) +iIm bi(e", 77)'
(") gps + (1+17) Im by(e?, )]

() gl + V2 |Em )

I

IN




Finite element methods for strucural acoustics_ ; . 7R

. 1/2
1lleMllazs Nlinlllazs + (2 Im bi(e". &) Im by(n. n)
< (1+v2) llle*llazs llinlllozs . (6.64)

In the above calculation we used the stability conditions (6.58) and (6.59) in line
one, the consistency condition (6.49) in line three, and the Schwarz inequality in line
" seven. And so, by the triangle inequality, and the interpolation estimates (6.62) and
(6.63)

IN

lC¢h2l, ]a"[ <1

2 .
Mellses < { 280 G, 1ol S ] (6.65)

Remarks

1. The DtN term is essential for proving stability of the Neumann problem, and
does not adversely affect the interpolation and error estimates.

2. Convergence rates of the Galerkin/least-squares method are optimal for all val-
ues of a”. The error estimates (6.65) indicate convergence of the finite element
solution at optimal rates in the H' and L, norms for |o*| > 1, and when waves
are resolved (|a®| <'1) in the H! seminorm, which implies optimal rate of -
convergence in L, as well. o

3. As expected, the error bound for unresolved waves in (6.65) indicates deterio-
ration of the finite element solution with growth in wave number or decay rate.
Nevertheless, optimal convergence rate with mesh refinement is preserved.

6.4 Numerical Results

Numerical examples of problems that can be reduced to one dimension were employed
in previous chapters as a design tool and, in conjunction with the convergencé proof,
as a means to verify the generality of the finite element formulations proposed. In
the following we consider additional numerical examples of increasing complexity to
further validate these methods. The examples are selected so that either analytical
solutions or an intuitive understanding of the behavior of solutions are available, in
order to evaluate the quality of the computed solutions.

6.4.1 Plane-wave propagatiovn in a waveguide

Consider the problem of finding the solution ¢ : { = {(z,y): 0<2 <L, 0<y<
Ly} — R within a waveguide:

(V2+k)d(z,9)=0 inQ ' (6.66)
$(0,y) =90,  ¢(Ls,y)=0 (6.67)
by (2,0) = @y (2,L,) =0 (6.68)

This example illustrates that for problems where the direction of wave propagation
1s known a priori, in this case along the z-axis, the optimum GLS parameter 7 can be
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calculated from (6.22). With the computational domain discretized with a uniform
mesh of equally spaced bilinear finite elements, it can be shown that the GLS nodal
solution to this problem has the same form as the analytical solution but with the
physical wavenumber k replaced with a numerical wavenumber k*. Since this problem
is an example of a plane-wave solution directed along z-direction mesh lines, the -
problem essentially is one-dimensional. ‘In this special case the GLS method can be
designed to achieve nodal exactness (superconvergence) by choosing the optimal GLS
parameter 7o such that exact phase is obtained; that is k* = k.

Now consider this same problem but now with the mesh rotated at 45 degrees

relative to the rectangular boundaries, see Figure 6.15. For this mesh and loading, .

the greatest accuracy is obtained by choosing 7 such that 6, = 45 in (6.22) since
- the mesh lines are rotated by 45 degrees to the direction of propagation. The GLS
solution to this problem is illustrated in Figure 6.16. For comparison, the Galerkin
and GLS solutions using 745; exact for waves directed along § = 45 relative to mesh
lines, and 70 and 7525; exact for waves directed along 6 = 0 and 6 = 22.5 are also
shown. From this result we observe that the GLS solution with 745 is very close to the
nodal interpolate of the exact solution. The solution is not perfectly nodally exact for
this mesh due to the presence of linear triangular elements used near the boundaries.
Results for the alternative GLS parameter 7o, 5 algo exhibit significantly improved
phase accuracy when compared to Galerkin. The solution using the one-dimensional
7o shows no improvement in accuracy when compared to Galerkin.

6.4.2 Green’s function for a rectangular domain

Consider the problem of finding the Green’s function é : @ — R within a square
domain: '

(V2 +E")¢(2,y) = —8(z — 20,y —y0)  in (6.69)

$(0,y) = ¢(L,y) = ¢(2,0) = ¢(z,L) =0 (6.70)
where L is the side length. The solution to this problem is composed of a series of
reflected waves which give rise to complicated standing wave patterns, see [152].

This problem is numerically solved by the Galerkin/Least-Squares method using a
uniform mesh of 20 x 20 bilinear quadrilateral elements. All calculations are performed
- with 2 x 2 Gauss integration with kL = 57/3. The source is located in the upper
right quadrant (zo,yo) = (0.8L,0.8L). In Figure 6.17 the contours of the exact series
solution interpolated with the mesh employed is illustrated. The solution profile for
a cut located at y = 0.2L is given in Figure 6.18. The L, norm of the error |le]] for
the Galerkin and GLS solutions using the mesh parameters 74 and 75,5 is computed
as:

Galerkin = 0.691
GLS(7) = -0.240
GLS(T22_5)' = 0.148

Results of this numerical example indicate that the additional least-squares operator
with the family of mesh parameters 7 defined in (6.22) improves the accuracy of the
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Figure 6.15: Rotated finite element mesh of linear quadrilateral elements and linear
‘triangular elements for Dirichlet waveguide problem.

exact
Galerkin R SN
TQ =~} —

722.5 =— & —

T4p —-0—--

Figure 6.16: Waveguide problem with rotated mesh and plane-wave solution directed
along z-axis; kh = 7/3, six elements per wavelength.
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Figure 6.17: Contours for point source located in upper fight quadrant of a uniform
mesh of (20 x 20) bilinear elements, at kL = 5x/3.
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Figure 6.18: Point source located in upper right quadrant: Solution profile along
z-axis for fixed y/L = 0.2




o
[EV]

Finite element methods for strucural acoustics

Galerkin solution. However for this problem where waves are directed in arbitrary

directions in R?, use of the GLS parameter 7,55 is more accurate than the use of 7

as predicted from the two-dimensional Fourier analysis. These results substantiate

the conclusions drawn earlier: If the predominant direction 6, is known a priori, then
the optimal mesh parameter can be calculated from (6.22). However, for general

problems where waves are directed in arbitrary directions in R?, the GLS parameter

Too.5 gives the most accurate solution.

6.4.3 Acoustic radiation from a circular cylinder

In this example we consider the problem of non-uniform radiation from a rigid infi-
nite cylinder of radius a. By increasing the circumferential harmonic loading on the
surface of the cylinder, the response of individual modes on the performance of the
numerical solution is examined. The position of the truncation boundary is set at
R = 2a where the exact DtN non-reflecting boundary condition is applied. The re-
sulting computational domain is discretized by 3 x 32 bilinear quadrilateral elements
(Figure 3.3). The geometrically non-dimensionalized wavenumber is set at ka = .
With the finite element mesh employed, this value corresponds to a resolution of six
elements per wavelength in the radial direction.

For the first harmonic (breathing mode n = 0), the exact solution is a simple
cylindrical wave which has the character of a radially decaying plane-wave. For the
radially uniform mesh employed, this problem reduces to a one dimensional problem
with radial coordinate r. Taking & to be the element length in the r-direction, Harari
and Hughes [60] have shown that the GLS parameter 7, is optimal in this case.

In [152], the higher-order circumferential harmonics n = 1 through n = 4 were
investigated in order to further validate the accuracy of the GLS method for more
complex non-uniform radiation patterns. Figure 6.19 shows a summary of these
results as a profile of the solution evaluated on the DtN boundary r = R. The GLS
solution was calculated using both 75 and 753 5 defined previously.

For mode n =.1, the improvement of the GLS solutions in comparison to the
Galerkin solution is 51gn1ﬁcant We also observe that in this case, 7o performs better
than 72;5. As the circumferential mode is increased to n = 2, the improvement in
the GLS solution is again significant, however in this case, the GLS solution using
either 74 or Ty2.5 are nearly identical. For mode n = 3, the improvement of the GLS
solutions in comparison to the Galerkin solution is again clearly shown. However, in
this case the use of 799 5 gives the most accurate solution and is barely distinguishable
from the exact solution. Results for mode n = 4 are given in [152).

The results of this study indicate that for this particular problem, for low modes
n = 0,1, the radiated energy of the cylindrical waves are best resolved by the GLS
parameter 7o, designed to improve dispersion errors for plane-waves directed along
radial rays, while for higher modes n = 3,4, the alternative GLS parameter 755
designed for arbitrary directional wave vectors performs better. In more general
settings where the radiation pattern is more complex and for unstructured meshes, it
is expected that 7995 will give the best results.
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Figure 6.19: Harmonic radiation from a cylinder with ka = 7. Solution plotted along
the truncation boundary R = 2a. From top to bottom, mode n =1, 2, 3
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6.4.4 Radiation from an element of a cylinder

In all of the following examples the GLS solution employs 7, based on the analysis
in Section 5.2. To solve more complicated problems we consider the non-uniform
radiation from a rigid infinite circular cylinder with a constant inhomogeneous value
on an arc (—a < 8 < @) and vanishing elsewhere. The normalized analytlcal solution
* to this problem for a cylinder of radius a is

2 &, sinna HY(kr)

= =)' cos né 6.71
¢ 77',; " H,(Ll)(ka) : R ( )

For low wave numbers this solution is relatively uniform in the circumferential direc-
tion. The directionality of the solution grows as the wave number is increased, and
the solution becomes attenuated at the side of the cylinder opposite the radiating
element.

The properties and discretization are unchanged from the previous problem con-
sidered (Fig. 3.3). We select a = 57/32 and employ 8 terms in the DtN kernel.
Figure 6.20 shows the real part of the analytical solution, nodally interpolated by the
mesh employed. The low-amplitude oscillations in the vicinity of the wet surface are
merely a product of the series representation of the discontinuity in the boundary
condition, and are not relevant to the validation of the numerical results. The real
parts of the Galerkin and Galerkin/least-squares solutions are presented in Figs. 6.21
and 6.22, respectively, in comparison to the series solution which is denoted by the

~dotted contours. Again, both numerical solutions capture the essential physics of the
problem, but their individual performance is difficult to evaluate from the contour
plots. Figure 6.23 depicts the imaginary part of the solutions evaluated along the
artificial boundary. The improvement of the Galerkin/least-squares solution in com-
parison to the Galerkin solution is striking in this case. Recall the impact of numerical
accuracy on the artificial boundary on the quality of far-field solutions obtained by
the DtN method. '

6.4.5 Scattering of a plane wave from a cylinder

The difference between an undisturbed wave and the acoustic field generated when
the wave encounters an obstacle is called a scattered wave. In the typical range of
acoustic phenomena the scattered wave usually does not destructively interfere with
the incident wave, allowing their complete separation. As an example we compute
the scattering, by a cylinder of radius a, of a plane wave traveling along the positive
z axis (§ = 0) in a direction perpendicular to the cylinder’s axis. The normalized
analytical solution to this problem is

(k ' (k
P SO IACIER ALY
n=o 7Hn’'(ka)+ HY "(ka)
where 7 is related to the acoustic impedance of the cylinder. Again, the directional-

ity of the response increases with wave number, and the distribution becomes more
complicated. '

HY(kr) cosnd (6.72)
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Figure 6.20: Radiation from an element of a cylinder of radius a, R = 2a, ka = =,
nodal interpolation of the series solution (6.71).

The properties and discretization are retained from the previous problems consid-
ered (Fig. 3.3). We select a hard boundary condition (1 = 0) on the wet surface to
represent a rigid solid, and again employ 8 terms in the DtN kernel. Figure 6.24 shows
the real part of the analytical solution, nodally interpolated by the mesh employed.
The real parts of the Galerkin and Galerkin/least-squares solutions are presented
in Figs. 6.25 and 6.26, respectively, in comparison to the series solution which is de-
noted by the dotted contours. Again, both numerical solutions represent the expected
physical behavior of the solution, but the Galerkin/least-squares solution is clearly
superior and is barely distinguishable from the series solution in most of the domain.
- Figure 6.27 depicts the imaginary part of the solutions evaluated along the artificial
boundary. The improvement of the Galerkin/least-squares solution in comparison to
the Galerkin solution is again evident. Recall that the accuracy of numerical solutions
on the artificial boundary determines the quality in which the DtN method represents
the far field, which is particularly significant in scattering problems.

6.4.6 Decay in a unit square with a uniform source distri-
bution |
The configuration of this example, which has a decaying exact solution, is taken from

Franca and Dutra do Carmo [34]. The domain is a unit square discretized by a 20 x 20
mesh of bilinear elements. Homogeneous Dirichlet boundary conditions are imposed
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Figure 6.21: Radiation from an element of a cylinder of radius @, R = 2a, ka = ,
Galerkin solution (dotted contours denote series solution).

on two adjacent sides and the function is required to take on the value of unity on
the remaining sides. There is a uniform source distribution f = 10® and the decay
rate is k¥ = —10%. These values are selected so that the exact solution is essentially
uniform throughout most of the domain, decaying sharply in thin boundary layers
near the boundaries with homogeneous boundary conditions. Figure 6.28 shows an
elevation plot of the Galerkin solution to this problem, with the expected spurious
. oscillations in the neighborhood of the boundary layer. Again, this is an indication of
insufficient resolution, and would improve with mesh refinement.: These oscillations
are absent in the Galerkin/least-squares solution, Fig. 6.29, which is identical to the
Galerkin/gradient least-squares solution shown in [34], as predicted. This solution
captures the expected behavior of the exact solution.
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Figure 6.22: Radiation from an element of a cylinder of radius a, R = 2a, ka = ,
Galerkin/least-squares solution (dotted contours denote series solutlon)




Finite element methods for strucural acoustics

v ¢}
7

0.3 T T T T T T I '
g | series ]
0.2 N, Galerkin --%--- -
“\ . GLS _o_ “
Z
0.1 !
-
£
~
0 -
-0.1
_02 1 | | |
0 0.2 0.4 ‘ 0.6 0.8 1.0
0/m
Figure 6.23: Radiation from an element of a cylinder of radius a, R = 2a, ka = 7,

along the artificial boundary R = 2a.
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Figure 6.24: Scattering of a plane wave (at 6 = 0) from a cylinder of radius a, R = 2aq,
ka = 7, nodal interpolation of the series solution (6.72).
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Figure 6.25: Scattering of a plane wave (at § = 0) from a cylinder of radius a, R = 2a,
ka = m, Galerkin solution (dotted contours denote series solution)




Finite element methods for strucural acoustics 91

Figure 6.26: Scattering of a plane wave (at § = 0) from a cylinder of radius a, R = 2a,
* ka = 7, Galerkin/least-squares solution (dotted contours denote series solution)
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Figure 6.27: Scattering of a plane wave (at 6 = 0) from a cylinder of radius a, R = 2a,
ka = 7, along the artificial boundary R = 2a.

Figure 6.28: Galerkin solution to a Dirichlet problem with a decaying exact éolution.
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Figure 6.29: Galerkin/least-squares solution to a Dirichlet problem with a decaying

exact solution.



Chapter 7

The Cost of Computation

Cost-effectiveness of numerical schemes is a primary consideration in method design,
since it determines both the economics of computation and the limit of problem-
solving capabilities on existing computer technology. The demand for large-scale
problem-solving capabilities is growing with increasing interest in the numerical mod-
eling of realistic configurations, driving the development of sophisticated algorithms
that are amenable to efficient implementation on modern vector and parallel plat-
forms. In this study we investigate the computational cost of obtaining solutions

" to problems of time-harmonic acoustics by the boundary element and finite element

methods. In order to arrive at comprehensive conclusions, a set of representative prob-
lems in both bounded and unbounded domains are examined. The results obtained
apply directly to any class of problems with complex scalar dependent variables, de-
fined over similar configurations, and can easily be specialized to real variables and/or
extended to problems that are governed by systems of equations.

We concentrate on the cost of solving the linear algebraic systems of n., equations

Az = b - (1)

that arise in discretizations employing linear elements. Problems are parameterized
by n, a typical number of elements, and quantities pertinent to the computation are
expressed in terms of this parameter. Computational cost for a given problem size
may then be discussed in terms of the order of n and its coefficient, and boundary
element and finite element techniques are thus compared.

The choice of linear elements as the basis for comparison is motivated by conve-
nience. Higher-order interpolation favors boundary element methods since the ensu-
ing equations are always fully coupled, the order of interpolation notwithstanding,
whereas the bandedness of finite element matrices is adversely effected by higher-
order elements. Nevertheless, the results obtained by employing linear elements are
applicable to our interests, which are primarily in conclusions of a general nature, in
establishing the feasibility of employing the two methods, rather than pinpointing the
crossover at which one gains an advantage over the other for specific cases. Higher-
order elements may also improve some aspects of the solution, but considerations of
accuracy are not addressed in this study. The prevalent opinion among practitioners
of boundary element methods appears to be that for comparable levels of discretiza-
tion (when the boundary element mesh is the restriction of the finite element mesh to

94
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the boundary), boundary element methods will provide more accurate solutions than
finite element methods. We have been unsuccessful in locating references to substan-
tiate this claim, and on the other hand have found studies performed in the boundary
element community indicating that the accuracy of the two methods is comparable
([24] and [110]).
The strategies for solving systems of coupled equations fall into two main classes:
‘direct methods and iterative methods. Direct methods, which are based on Gaussian
elimination, are more prevalent in commercial software and better understood theo-
retically. These procedures are extremely reliable, and provide an a priori estimate
of the computational effort required, but the cost grows rapidly with the number of
-equations, restricting the problem size for which direct methods are economical. In-
vestigation of iterative solution techniques is currently on the rise. The performance
of these methods varies widely, and is particularly sensitive to the conditioning of the
equations, but, overall, iterative algorithms are very efficient for large-scale computa-
tion, most notedly in parallel computational environments. In addition to comparing
boundary element and finite element methods within the context of each solution pro-
cedure, we examine the relative performance of the two solution techniques. Unlike -
many conventional numerical applications, in which the cost of forming the discrete
equations is small in comparison to the cost of solving the linear system, in many of
the cases considered herein equation formation is not a negligible component of the
computation, especially when considering iterative solution methods for large-scale
problems. The greater part of this work concerns these three topics: direct solvers,
iterative solvers and equation formation
The work of scientific computation is measured in flops, floating-point operations.
In the following we employ the traditional definition of a flop given in [45, p. 32]
and {69, p. 642] as approximately the work required to execute s := s + T;y;, i.e.,
a multiplication, an addition and some bookkeeping. This convenient definition suf-
fices for the comparative study pursued herein, but is inappropriate as an absolute
measure on modern vector and parallel platforms in which an individual addition or
multiplication is considered to constitute a flop [31, pp. 42-45]. Storage requirements
are measured in words. ' . ' ,
In Section 7.1 computations attributes of boundary element and finite element
. methods are presented. Direct solution techniques are reviewed in Section 7.2, and
the cost of employing such techniques to solve the equations arising from boundary
element and finite element analyses of a wide range of geometric configurations is
evaluated and compared. This study is repeated for iterative solvers in Section 7.3,
employing the GMRES procedure as a representative technique. In Section 7.4 the
“ two solution strategies are compared, and the cost of equation formation is examined.

7.1 Computational Attributes of Numerical Meth-
ods

~ The comparison of boundary-based computation to domain discretization leads to in-
teresting issues in terms of the economics of computation. The advantage in terms of
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the effort of forming and solving the algebraic equations that the former might intu-
itively be expected to gain, due to its fewer number of equations, is counterbalanced
by the favorable structure of the matrices arising in the latter. The groundwork for
a detailed study is laid out in the section by examining the properties of the systems
of equations associated with the two types of computational methods.

7.1.1 Boundary element formulations

The use of boundary element methods (e.g., [20, 101]) for computing solutions to
~ linear, homogeneous, isotropic problems governed by the homogeneous Helmholtz
equation is wide-spread (see, e.g., the survey in [137]). Based on Helmholtz integral
representations, and hence requiring only surface discretization, boundary formuila-
tions appear to be well-suited for problems of acoustics, which are often defined over
unbounded domains. Surface discretization leads to an undisputed advantage over
domain-based methods in the effort (both human and computational) required by
the mesh-generation portion of model preparation. The ensuing computational ef-
fort associated with the algebraic equations is studied in detail and compared in
Sections 7.2 and 7.3 in the context of direct and iterative solutions strategies, respec-
tively. Numerical methods that are based directly on surface Helmholtz equations of
exterior problems, evaluated at physical boundaries, are known to produce discrete
equations that are ill-conditioned in the vicinity of characteristic wave numbers [22].
We consider the Burton-Miller approach [19] for generating boundary element for-
mulations that theoretically preclude non-unique solutions. (Other notable attempts
at alleviating this difficulty are the CHIEF method [130], and the use of modified
Green functions [95].) The integration of the hyper-singular kernels that arise in
this scheme is addressed by the regularized version of this formulation. Alternative
remedies have been proposed, such as isolating problematic terms in the integrand
by means of a Taylor series expansion and employing Stokes’ theorem to remove the
hypersingular kernels [103] and applied to Burton-Miller formulations for problems
of time-harmonic acoustics [107].

‘The arrays in (7.1) for boundary element implementations are A € C”“’x"“' a
full and nonsymmetric matrix, and b € C7. The computational advantage that
could be gained by boundary discretization, giving rise to relatively small systems of
‘equations, is offset to a degree by the fact that the equations are fully coupled. A
major thrust of this study is to characterize the extent of this offset. Furthermore,
formation of the linear equations may be a significant portion of obtaining solutions
by boundary element techniques. This is mainly due to implementational issues such
as integration along non-smooth boundaries. The impact of equation formation may
become considerably higher when a Burton-Miller approach to boundary element
formulation is used, and can overwhelm all other aspects of the computation for
the regularized version of that approach ([6], see Section 7.4). Alternatives to the
regularized Burton-Miller scheme that do not contain hyper-singular integrals [107]
may alleviate this difficulty.

Iterative solvers are notoriously sensitive to ill conditioning of the linear equations,
emphasizing the importance of this facet of the algebraic problem. Loss of uniqueness
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of solutions of the continuous formulation will manifest itself as poor conditioning of
the discrete equations. This is evident in the conditioning of the coupled boundary
element equations reported in [46], for the scattering from an elastic aluminum sphere
of radius a immersed in water, in the geometrically nondimensionalized wave number
range 1 < ka < 7, where k is the (physical) wave number. The condition number rises
sharply in the vicinity of the characteristic wave numbers of the sphere. These results
are presented in the 1-norm, which is equivalent to the 2-norm that is commonly
used, and are normalized by the condition number at ka = l which was about 40,
and scaled by the shear modulus of the solid.

7.1.2 Finite element formulations

Finite element techniques are a general-purpose computational tool (not restricted
to linear, homogeneous or isotropic problems) used in a wide variety of applications.
These methods are being increasingly employed for problems of acoustics and struc-
tural acoustics, e.g., [2, 8, 117, 123], as well as being presented herein. ‘Traditional
- finite element formulations can not be directly applied to problems in unbounded
domains. Infinite elements [17] and a sequence of local boundary operators [15] are
examples of means that have been suggested to circumvent this difficulty. In this
study, we consider finite element techniques that utilize the DtN methodology in-
troduced by Givoli and Keller [41, 98] for constructing boundary conditions on an
artificial boundary (Fig. 2.1) as presented in Chapter 2. It is shown in Chapter 3 that
the DtN boundary condition precludes singular ‘behavior in finite element solutions
for problems in exterior domains (recall, the exact solution is unique). The DtN op-
erator imposes an ezact impedance condition on the artificial boundary, enabling the
development of finite element methods that converge with mesh reﬁnement for fired
computational domains. '

Wave resolution requirements in finite element formulations for problems of acous-
tics are relaxed in Chapter 5 by the Galerkin/least-squares (GLS) methodology. The
resulting finite element models are accurate to a minimum of four linear elements
per wave (the limit of approximability of such physical features), and exhibit strong
damping of phenomena that are insufficiently resolved. Evanescent waves are also
well represented by these models. A specialization of this technique is particularly
- appropriate for exterior problems which are meshed by a single layer of elements,
shown in some of the examples that follow.

For interior problems A € R™¢*™ js banded (with half-bandwidth b,,) and sym-
metric, as in traditional finite element implementations. Employing a DtN boundary
- condition for exterior problems has significant computational ramifications. Consider
an external artificial boundary with n, < n., nodes. The coefficient matrix A above
can be written in partitioned form, separating nodes on the external boundary

A= [An Au

Ay Ay (7.2)

where A1, = AZ. The coefficient matrix for the exterior problem with a DtN bound-
ary condition, which couples all of the equations on the artificial boundary, takes the
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form
All A12

A Axp+ Apiv

* where the DtN contribution Ap;y € C™*™ is full and symmetric. If ny < n,. the
node numbering can often be ordered so as to maintain the underlying bandwidth
(see [98]). Unfortunately, this is not always possible, and, as a matter of fact, is
not the case in any of the configurations considered herein. As well as potentially
degrading the bandwidth of the linear equations, the DtN operator consists of kernels
that are similar in nature to those found in boundary element methods. The cost of
equation formation might thus become comparable to the cost of solving the linear
system. In finite element implementations for interior problems formation of the
discrete equations is a negligible part of the computation. This issue will be discussed
further in Section 7.4. As in the case of boundary element implementations, b € C,.

The conditioning of finite element models for time-harmonic acoustics was exam-
ined in [59]. The Galerkin/least-squares equations are slightly better conditioned the
the Galerkin equations, influencing the performance of iterative solution techniques.

A =

7.2 Direct Solution Techniques

The solution to linear systems of coupled equations is currently most often obtained
by direct methods, algorithms that employ Gaussian elimination procedures to essen-
tially invert the coeflicient matrix. The popularity of these schemes can be attributed
to their robust performance, relatively simple implementation and their predictability
in cost requirements, but they are not cost-effective in large-scale computation.
Typically, the first step in solving (7.1) for a general, nonsingular A € R"eaX™ea-
(see [45, pp. 53-58]) is to factorize A into lower and upper triangular matrices, L
and U, respectively,

A=LU n/3 flops | (7.4)

The solution is then obtained by a backsolve, namely
Ly =b" forward reduction, n2 /2 flops (7.5)
Uz =y back-substitution, n? /2 flops (7.6)

totaling nZ, flops. There are n2, words of storage required.

Remark: For complex arithmetic, operation counts are increased by a factor of four,
and storage by two.

In finite element analysis the matrices have special structure which may be ex-
ploited to economize the computation. There are two main approaches to imple-
menting direct methods in this context. An active column solver [154] assembles the
matrix in a compact data structure, prior to factorization, taking full advantage of
symmetry and sparseness of the array. In a frontal method [83] only the coefficients
needed for the reduction of a particular equation are assembled, and the equation
is immediately eliminated. The number of operations for the two approaches is the
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- same, but frontal solvers, which typically require less core memory, are inferior to col-
umn solvers for large-scale problems, in particular on vector platforms [142]. Frontal
techniques are also inappropriate for configurations in which there is a relatively high
degree of coupling such as models of exterior problems which are dominated by the
DtN portion. In- this study we consider the active column implementation of finite
element methods (b, then denotes the mean half-bandwidth) for comparison with
boundary element techniques.

More efficient, special-purpose algorithms are thus used when A is banded and
symmetric ([45, pp. 93-97] and [69, pp. 635-643]). Factorization is

A=UTDU n,b /2—1b%/3 flops (7.7)

where D is a diagonal matrix, and the appropriate backsolve procedure

Ul =b forward reduction, ne.b, — % /2 flops (7.8)
Dy ==z diagonal scaling, n., flops (7.9)
Uz =y back-substitution, neyb, — b2 /2 flops (7.10)

requires a total of 2n.b,, — b2 flops. The storage required is Tegby Words.
Remarks :

1. These are asymptotic cost estimates, assuming Neg > 1 and by, > 1.

2. In traditional finite element implementations Neg > by, and thus factorization
requires negb?, /2 flops, and 2n,b, flops are needed for the backsolve portion.
When using a DtN boundary condition, however, the higher-order b,, terms may -
become significant.

7.2.1 Interior problems

We first consider boundary-value problems of acoustics defined over interior domains,
bounded. externally by a physical boundary. Such problems exhibit resonance at
countably infinite discrete wave numbers: The equations that emanate from numerical
methods should be well-conditioned at intermediate values.

The economic performance of direct solvers for boundary element and finite el-
ement methods applied to the configurations examined in this section was studied
by Bettess [18]. The following results differ somewhat in that the equations of time-
harmonic acoustics are considered, engendering boundary element equations with
complex coefficients. Nevertheless, the conclusions presented at the end of this sec-
tion are in agreement with those drawn in [18].

Two configurations are considered, each with n elements per side. Figure 7.1
shows the first example, a square domain discretized by a mesh of n x n elements.
The second configuration is its three-dimensional analog (Fig. 7.2). We are interested
in evaluating method performance on large-scale problems and therefore consider
n> 1.
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- Figure 7.1: A square domain discretized by a n X n mesh.
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Figure 7.2: A cube discretized by a n X n X n mesh.
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Table 7.1: Cost of directly solving boundary element equations for interior problems
shown in Figs. 7.1 and 7.2 (all operations are in complex arithmetic).

No. of | Factorization | Backsolve | Storage
Mesh | equations [Flops] [Flops] | [words]
Neg 4n? /3 4n2 2nZ
nxn 4n 256n°/3 64n? 32n?
nxnxn| 6n? "+ 288n8 144n* 72n*

Table 7.2: Cost of directly solving finite element equatiohé for interior pfoblems shown
in Figs. 7.1 and 7.2 (all operations are in complex arithmetic).

No. of Half- Factorization |-Backsolve | Storage
Mesh | equations | bandwidth [Flops] [Flops] . | [words]
Mg b, Negb? /2 8neq by Tegbu
nXn n? n n*/2 8n® n3
nXnxn n? n? n’/2 8n® n®

Recall that boundary element methods give rise to systems of equations in which
the coefficients, as well as the unknowns and the prescribed data, are complex. This
fact is reflected in Table 7.1, which shows the cost entailed in directly solving these
equations.

Due to phase lag in Galerkin finite element methods, resonance adversely ef-
fects the results in the vicinity of characteristic wave numbers, causing amplitude
modulation. This was demonstrated in.[57], along with superior performance of a
Galerkin/least-squares method. Interior problems are suitable for traditional finite
element implementations (without a DtN procedure). The left-hand side coefficients
are therefore real, and only the backsolve procedure need take into account complex
arithmetic, as shown in Table 7.2.

It is immediately evident that the anticipation that boundary element methods
umformly entail less cost due to the smaller number of equations involved is a mis-
conception. As a rule (for this type of problems), the order of the cost is indeed lower
for boundary elements. The coefficient, however, is significantly higher. This leads
to finite elements being more cost-effective for relatively small problems, and bound-
ary elements being more cost-effective for larger problems. Table 7.3 indicates the
number of elements per side at which the costs of the two methods are equal for the
two configurations considered. The magnitude of the problem that must be consid-
ered before boundary element methods exhibit computational benefits is indeed quite
large, in particular in three dimensions, both from the point of view of computations
and that of storage requirements.

Remark: The crossover for the three-dimensional mesh (n = 576) is equivalent to
1,990,656 (fully coupled) boundary element equations. This is clearly beyond the
range of capabilities of direct solvers in current computer technology, indicating that




Finite element methods for strucural acoustics - 102

Table 7.3: Crossover for direct methods on interior problems shown in Figs. 7.1 and 7.2
(value of n, number of elements per side, at which costs are equal).

Mesh Factorization | Backsolve | Storage
nxn 171 8 32
nXnxn 576 18 72

for many practical configurations the use of direct solution technigues for interior
problems is more cost-effective with finite elements.

7.2.2 Exterior problems

We now direct our attention to exterior domains, bounded internally by a physical
body. As previously noted, the exact solution is unique, in contrast to interior prob-
lems. Problems with simple interior boundaries, that allow uniform discretization, are
treated separately from those with more intricate geometric features on the physical .
boundaries, that require gradual refinement of finite element meshes. In the following
all operation counts correspond to complex arithmetic.

Uniform discretizations

We first consider counterparts to the interior examples that were discussed above.
Figure 7.3 shows a square body with n elements per side, and its three-dimensional
analog in the form of a cube discretized by a mesh of n x n x 6 elements (not shown)
is considered as well. Boundary element discretizations are unchanged from the ones.
employed to model interior problems. Operation counts, Table 7.4, are also identical
to interior problems, cf. Table 7.1. We have already noted the failure of surface
Helmbholtz equations evaluated at physical boundaries at characteristic wave numbers.
In practical terms this translates to a restriction of the applicability of these methods
to problems with low wave numbers, unless an appropriate modification to the basic
formulation, such as the Burton-Miller approach, is employed. We have mentioned
other remedies for this limitation, but the clustering of characteristic wave numbers
" in the higher range and for elongated geometries greatly reduces their reliability. A
value that is often employed by numerical analysts is kA < 7 (in three dimensions),
where A is the radius of the circumscribing sphere. ,

The finite element meshes employ a single layer of elements with a DtN boundary
in the form of a d-dimensional sphere (e.g., Fig. 7.3), where d = 2 or 3 is the number
of space dimensions. As previously noted, there is a version of the Galerkin/least-
squares method in [57] that is particularly appropriate for such meshes. Table 7.5
shows the operation counts for finite elements. In these examples the non-localness
of the DtN boundary condition effects the bandwidth significantly. Without the DtN
boundary condition, the bandwidth would be of one order lower than that of the
number of equations (Table 7.2). With the DtN boundary condition, the bandwidth
is of an order equal to the order of the number of equations, namely, for one layer of
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Figure 7.3: The computational domain exterior to a square discretized by n elements
per side.

Table 7.4: Cost of directly solving boundary element equations for exterior problems
with uniform discretizations, e.g., see Fig. 7.3.

No. of | Factorization | Backsolve | Storage

Mesh | equations [Flops] | [Flops] | [words]
Teg 4n3 /3 4n?, 2n?,
n x4 4n 256n°/3 64n? 32n?
nXxnx6 6n? 288n 144n* 72n*
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Table 7.5: Cost of directly solving finite element equations for exterior problems with
uniform discretizations, e.g., see Fig. 7.3.

No. of Half- Factorization Backsolve | Storage
Mesh | equations | bandwidth [Flops] [Flops] [words]
Teg by, 21 b2 — 463 /3 | 8negby, — 4b% | 2nyby,
n x4 8n 2n 160n°/3 112n? 32n?
nxnx6 12n2 3n? 180n° 252nt 2n4

elements b,, = n.,/4, see Table 7.5. Higher-order b,, terms are therefore kept in the
operation counts. Nevertheless, the factorization costs are of the same asymptotic
order as boundary elements, with lower constants for one layer of elements. There
is no crossover because finite elements are less costly for these configurations on any
size mesh. This is easily explained by the fact that the factorization of the finite
element equations is dominated by the DtN portion, which is equal in size to the
" boundary element problem, but symmetrical. (The backsolve procedure is uniformly
more expensive on these problems for finite element equations, but this portion of
the calculation is relatively insignificant. Storage requirements of the two methods
are identical.) Furthermore, the resulting finite element wave number limitation

x {7.58, d=2 (711)

kA < Ji—1 1420, d=3

is less restrictive than for boundary elements. This value is based on a minimum
resolution of four elements per wave, obtained in Chapter 5 with the Galerkin/least-
squares methodology.
Remark: The situation is unchanged when considering boundary element models of
more regular physical objects such as cross sections of circular cylinders (Fig. 7.4)
and spheres. The operation counts and storage requirements are identical to those
of squares and cubes, respectively, for the same number of elements, and the wave
. number restriction, which is inherent to the formulation, is still the same. For finite
elements the solution cost is also unchanged, but the wave number restriction, which
~ was a consequence of the geometry, is lifted. The same is true for an ellipsoid of rev-
olution (Fig. 7.5), which requires the introduction of a non-spherical DtN boundary.
This is achieved by employing fundamental solutions in elliptic coordinates [53].

The wave number restriction of boundary. elements is in terms of a geometrically
non-dimensionalized wave number, and hence can not be relaxed except via a mod-
ification of the method such as the Burton-Miller approach, engendering significant
additional computation. In contrast, finite element models are restricted by wave
resolution, i.e., a numerically nondimensionalized wave number. The range of appli-
cability of these models can be extended simply by mesh refinement, with the obvious
consequence of higher cost. An example of this tradeoff is shown'in Table 7.6, in which
meshes with two layers of elements are considered, increasing the upper bounds on
the allowable wave number in (7.11) by a factor of two. :

In summary, for exterior problems with uniform discretizations, it is less costly to
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Figure 7.4: The computational domain exterior to a circular cylinder or a sphere.

Figure 7.5: The computational domain exterior to an ellipsoid of revolution.
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Table 7.6: Cost of directly solving finite element equations with a double wave number
range for exterior problems with uniform discretizations, by employing meshes with
two layers of elements.

No. of Half- Factorization Backsolve | Storage
Mesh equations | bandwidth [Flops] [Flops] [words]
Teg by, 2neg b2 — 45 /3 | 8neghy, — 402, | 2negby,
9 % 4 12n 8n/3 11776n3/81 | 2048n2/9 | 64n?
2n xn x6 18n? 4n? 1472n%/3 512n* 144n*

Table 7.7: Cost of directly solviﬁg boundary element equations for exterior problems
with gradually refined discretizations shown in Figs. 7.6 and 7.7.

No. of | Factorization | Backsolve | Storage

Mesh equations [Flops] [Flops] [words]
Neg 4n3, /3 4n?, 2n2,
nxl1 11n/9 5324n3 /2187 | 484n%/81 | 242n?%/81

nx3n x1| 5(7n/9)2 | 500(7n/9)¢/3 | 100(7n/9)* | 50(7n/9)*

employ direct solvers with Single-layer finite element meshes than boundary element
models. Furthermore, the wave number restriction on finite elements is less severe,
and can easily be relaxed by mesh refinement.

Gradually refined discretizations

We next consider physical boundaries with more elaborate geometric features. A
two-dimensional example is a circle with a thin protrusion, of length approximately
a third of the diameter of the circle (Fig. 7.6). This configuration is discretized
with n elements around the circumference of the circle. We accounted for gradual
refinement of the finite element meésh around the protrusion. Figure 7.7 depicts a
slender ellipsoid of revolution, with length-to-diameter ratio of ten-to-one. It also
contains a thin protrusion, of length approximately a third of the diameter. The two-
dimensional configuration can be thought of as-a cross section through the middle of
this model. The mesh, again, contains n elements around the circular circumference,
and gradual refinement of the finite element mesh is accounted for. - Table 7.7 shows
the operation counts and storage requirements for solving the equations associated
with boundary elements. The same type of wave number restriction as before applies
to these solutions. .

The costs of solving the finite element equations are shown in Table 7.8. These
expressions are more complicated than in previous examples because of the inter-
nal mesh grading. Upon examination of the coefficients it becomes apparent that
the bandwidth varies from being of the same order as the number of equations for
relatively small meshes, to one order lower than the number of equations for larger
meshes. This occurs because the mesh on the DtN boundary need not resolve geo-
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Figure 7.6: The computational domain exterior to a circle with a thin protrusion.

Figure 7.7: The computational domain exterior to a slender ellipsoid of revolution
with a thin protrusion.
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Table 7.8: Cost of directly solving finite element equations for exterior problems
with gradually refined discretizations shown in Figs. 7.6 and 7.7 (the coefficients are:
B = (180 +n)/81, 7, = Z25510% | 3, = (13176 + 5m) 2187, 7, = L0e288z:810m)

No. of Half- Factorization - Backsolve Storage

Mesh equations | bandwidth [Flops] [Flops] [words]
Teg by, 2n.,b2 — 453 /3 8ne by, — 462 | 2ngyby,

nxl - Ban Yom 292(362 — 272)n%/3 | 472(28; — v2)n? | 2Byyan?
nx3nx1| psn’ y3n® | 273(36s — 295)n°/3 | 473(285 — ys)n* | 2B3ysn’

Table 7.9: Crossover for direct methods on exterior problems with gradually refined
discretizations shown in Figs. 7.6 and 7.7 (value of n, number of elements around the
circular circumference, at which costs are equal).

Mesh Factorizetion Backsolve | Storage
nxl1 83 — 36
nX3n xl 522 — 22

metric details of the physical boundary. On coarser meshes, the number of nodes on
the physical boundary is close to the number on the DtN boundary, and hence the
coupling of the DtN operator significantly impacts the bandwidth as in the exterior
problems with uniform discretizations. The higher-order b, terms are therefore not
neglected in Table 7.8. However, as the mesh is refined, the number of nodes on the
interior boundary increases at a faster rate than on the exterior boundary, diminish-
ing the influence of the DtN coupling, and progressively approaching the tendencies
seen in the interior problems, where the DtN operator was not present. A

In order to interpret the costs of the finite element analysis and compare them to -
boundary elements it is convenient to examine asymptotic values of the expressions in
Table 7.8. Consider the cost of the two-dimensional (n x 1) mesh. Factorization of the
finite element equations on smaller meshes tends to approximately 0.78n2 flops, i.e.,
the same order of the corresponding cost for boundary elements (Table 7.7), but with

* a smaller constant, and hence a lower cost. In the limit of very large meshes, this cost

tends to 0.031n* flops, one order higher than boundary elements, indicating that there
will be an intermediate mesh for which the two costs will be equal. Indeed, this occurs
with 83 elements around the circumference of the circle (Table 7.9). The situation is
similar for factorization of the three-dimensional case. As in the exterior problems
with uniform discretizations, the backsolve costs for finite elements are always higher
(see Table 7.9), but these costs are negligible in comparison to factorization. For these
problems boundary elements require less storage from relatively small size meshes.

Remark: The crossover for the three-dimensional mesh of 522 elements around the
circular circumference is equivalent to 824,180 boundary element equations. In a
coupled problem with a structure this will by scaled by a factor of six, leading to
over 5,000,000 equations. As in the case of interior problems, this is well beyond the
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current scope of application of direct solution technology. To summarize the results
so far, in the range of problem sizes that is applicable for direct solvers, finite element
methods are overall more cost-effective, except for larger storage requiremepts in some
- exterior problems that require gradual mesh refinement.

7.3 Iterative Solution Techniques

It is well-known, and corroborated by results of the previous section, that the cost of
direct methods for the solution of coupled linear equations grows rapidly with prob-
lem size, both in operation counts and in storage requirements. Traditional direct
solvers are thus rendered inapplicable to large-scale models of realistic configurations,
in which the computational community is becoming increasingly interested. Such
problems have motivated the resurgence of alternative solution strategies based on
iterative algorithms, for which asymptotic growth rates of cost can be significantly
lower than those of direct methods. In general, these are procedures for deriving
successively improved approximations to the solution of the linear algebraic prob-
lem (7.1), by means of a sequence of updates of an initial approximation. Iterative
schemes are being adopted for the solution of both boundary element and finite
element equations in a variety of applications, including acoustics [6], solid and struc-
tural mechanics [31], the compressible Euler and Navier-Stokes equations [135] and
the Stokes problem [138]. Interest in these methods is currently growing as they
are proving to be particularly well-suited for implementation in parallel-processing
environments. '

In contrast to direct methods, the performance of iterative solvers is highly problem-
dependent and the convergence of some schemes may deteriorate severely under cer-
tain conditions, hindering the advance determination of execution-time requirements.
For the purposes of analyzing method performance, the lack of capability to predict
the number of iterations required for the approximate solution to converge to within a
given tolerance of the exact solution motivates the parameterization of equation solv-
. ing costs by the number of iterations. A concrete comparison of boundary element
and finite element methods is then possible in terms of costs per iteration, which are
easily evaluated. ' ’

The field of iterative solvers for linear systems is pervaded with a profusion of
algorithmic issues of a problem-specific nature, that have significant impact on the
number of iterations required to solve the equations. We address these issues only
in a qualitative manner. It is well-known, and can also be shown theoretically, that
the convergence of iterative techniques is highly dependent on the conditioning of
the equations. This fact favors finite element formulations, which are quite well
conditioned, in contrast to the potentially extreme ill conditioning of boundary ele-
ment equations in the vicinity of characteristic frequencies (see Section 7.1). On the
other hand, numerical experience indicates that convergence may improve with an in-
creasing degree of coupling of the system of equations, which is the case for boundary
element methods. We conjecture that, by and large, finite element equations converge
more rapidly, but a significant amount of numerical experimentation is required to
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settle this issue.

Remark: The sensitivity of iterative solvers to the conditioning of the system of equa-
‘tions is often addressed by preconditioning and scaling, which can lead to substantial
- improvement in convergence rates. There are many approaches to preconditioning
and most practical implementations do employ one version or another, or a com-
bination of several. However, in focusing on cost per iteration, there is no need to
include these techniques in the solution algorithms on which we base our comparisons.
thereby simplifying the presentation considerably.

Of the myriad iterative procedures available for computation,-the choice.of which
to use as a base for the cost comparison is limited by the nonsymmetry of the sys-
tems that arise in boundary element equations. Earlier references regarding the iter-
ative solution of boundary element equations of acoustics propose employing classical
schemes such as Jacobi and Gauss-Seidel, as well as certain special-purpose meth-
ods (see, e.g., [20, pp. 31-37]). In [6], versions of multi-grid methods are employed
to solve the boundary element equations that emanate from the regularized Burton-
Miller formulation. We are not interested in investigating multi-grid schemes in this
study because fundamental issues regarding the performance of iterative solvers be-
come blurred in the context of these methods. Among the more sophisticated and
modern iterative algorithms that are both cost-effective and robust, without requiring
a priori estimates of eigenvalues, and that may be employed for nonsymmetric sys-
tems, two appear to be appropriate for large-scale problems of acoustics: generalized
conjugate gradient and generalized minimal residual. Generalized conjugate gradients
[9, 155] are a family of extensions of the ubiquitous conjugate gradient algorithm to
nonsymmetric matrices. Similarly, the generalized minimal residual procedure (GM-
RES), introduced by Saad and Schultz [127], is analogous. to the Lanczos method for
nonsymmetric systems. While the generalized conjugate gradient approach is the sim-
pler of the two conceptually, and is particularly easy to implement for programmers
who are familiar with conjugate gradients, it can be shown that the GMRES method
is less sensitive numerically, and more cost-effective in both operations and storage
[127]. The following cost comparison of boundary element and finite element methods
 is therefore performed on the basis of the GMRES algorithm. In order to highlight
the computational effort required to iteratively solve smaller, full systems of equations
as compared to larger, sparse systems, we examine a rudlmentary implementation of
~ the procedure that is employed in practice.

An outline of GMRES for solving (7.1) for a nonsymmetric, positive semidefinite
matrix A € R™?*"* js presented in the following. (A general reference for the review
of specific procedures and nomenclature utilized in this algorithm is [45].) Consider
an approximate solution of the form z¢+z, where x is an initial approx1rnat10n and 2
1s a member of the k-dimensional Krylov space, K = span{rq, Aro, A%rg,---, A¥ "1},
expressed in terms of the initial residual ro = b — A=z,. (In accordance with conven-
tional usage, k here denotes the dimension of the Krylov space; subsequent distinction
from the wave number will be clear from the context.)

Remark: In the low wave number case, a solution to the boundary-value problem for
the Laplace equation (if available) may serve as an appropriate initial approximation.
As long as the boundary conditions are not entirely of the Neumann type this solution
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is well conditioned.
An approximate solution of the linear system of equations (7.1) is sought by
considering a least-squares problem of size k in terms of the 2-norm of the residual

. — . 2
iz [|b— A(zo + 2] (7.12)
Consider the matrix U, = [u;, U, -, ui], where the columns form a basis of Kj.

The representation z = Uy gives rise to an equivalent minimization problem in
terms of y, the k scalar coefficients of the linear combination, namely

min ||ro — AUsy| - (1.13)
yeR*

If Uy is an orthonormal basis, then the problem can be written in terms of a Hessen-
berg matrix, offering significant computational advantage. The Hessenberg matrix
is triangularized by the Q-R algorithm, employing Givens rotations, to convert the
minimization problem to a back-substitution process. The residual norm is updated
at every 1teration at no extra cost, providing a stopping criterion without explicitly
updating the solution. The costs of the Q-R factorization of a Hessenberg matrix,
the back-substitution, as well as updating the solution at the end of the iterative
procedure are negligible.

We now examine the cost per iteration of performing k iterations (see discussion
in [127]). These are asymptotic cost estimates, assuming n, > k 3> 1. The first step
in each iteration is to form the Krylov vector, which consists of an Au product '

Upp1 = Auy n?, flops _ (7.14)

The vector is orthonormalized with respect to the existing basis of the Krylov space
by the modified Gram-Schmidt procedure, requiring kn., flops. The storage required
is ngq words (for the full matrix, as is the case for direct solution procedures; the addi-
tional kne, words required to store the Krylov vectors are neglected in this asymptotic
estimate). Recall that for complex arithmetic, operation counts are increased by a
factor of four, and storage by two. : : '

The matrix A need not be assembled since it is never operated upon directly in an.
iterative procedure. This fact offers no advantage for the fully-coupled equations that
arise in boundary element methods, which is certainly a hindrance to efficient imple-
mentation in parallel-processing environments. In typical finite element applications,
on the other hand, where A is sparse, this feature may be exploited by storing the
matrix in element files (see, e.g., [31, pp. 32-33] and [135]).  The computational
effort will then also depend on n.;, the number of elements employed, and Nen, the
number of element nodes. For linear elements in two dimensions Nen = 4, and in three
dimensions n., = 8. The DtN contribution, however, is coupled, and must therefore
be stored as a full matrix Ap;y, see ( 7.3). The Au product then requires 2ngn?, +4n?
flops. The orthonormalization procedure is not effected by the element data struc-
ture. The kn., words of storage for the Krylov vectors are no longer negligible, and
the storage requirement is thus ngn?, + 2(n? + kn.,) words. These estimates take
into account all complex arithmetic required, i.e., operations and storage involving
the DtN contribution and the Krylov vectors.
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Remarks

1. It is evident that the computational cost increases with k, the number of it-
erations, even on a per iteration basis. In practical implementation of many
iterative schemes, including the GMRES procedure, this difficulty is overcome -
by restarting the calculation after a predetermined number of steps (usually
based on numerical experience). A restarted algorithm also alleviates loss of
orthogonality that emanates from accumulation of error due to finite precision
arithmetic. We choose not to encumber our analysis with this option since it
has little impact on the comparison of the two methods considered, other than
to limit the number of iterations that are employed in practice. When a restart
option is activated, £ can be thought of as the number of steps allowed before
the calculation is restarted, and the costs per iteration shown in the following
are good estimates of those obtained in practice.

2. Potential cost savings in the operations and storage required for the Au product
can be realized by employing a “matrix-free” implementation, i.e., by perform-
ing the multiplication prior to the integration which leads to the formation of
A (see [86] and references therein). This procedure is particularly advanta-
geous in cases that require several matrix multiplications to form A, such as
the regularized Burton-Miller formulation [6]. The drawback of this approach
for comparison purposes is that the effects of solving the equations become con-
founded with those of equation formation. Furthermore, if equation formation
is significant, as it is in many of the cases considered in this study, this may
not be a cost-effective alternative. Employing this idea in practical situations
merits further study, but is beyond the scope of this work. :

The example problems that tested the performance of direct methods in Sec-
tion 7.2 are now revisited and examined in the context of iterative solvers.

7.3.1 Interior problems"

As in the study of direct methods, problems defined over interior domains bounded
externally by a physical boundary, Figs. 7.1 and 7.2, are first considered. The numer-
ical difficulties induced by the existence of resonant wave numbers of exact solutions
to these problems are exacerbated in the context of iterative solvers, underscoring the
importance of well-conditioned discrete equations at intermediate values. Table 7.10
shows the cost incurred by iteratively solving the boundary element equations, re-
flecting the fact that this formulation is entirely in terms of complex arithmetic.

A DtN procedure is not required for finite element models of interior problems
(ny = 0). The matrix A is therefore real, as shown in Table 7.11.
Remark: For large problems, when n., > k, considerable savings over direct solvers '
are immediately evident, in particular in three dimensions, cf. Tables 7.1 and 7.2.
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Table 7.10: Cost per iteration of k iterations for solving boundary element equations
for interior problems shown in Figs. 7.1 and 7.2.

No. of | Aw product | Orthonormalization | Storage

Mesh | equations [Flops] [Flops] [words]
Neg 4nd /3 4kne, 2n2,
nxn 4n 64n? 16kn 32n?
nXnxXn 6n2 144n* 24kn? 72n*

Table 7.11: Cost per iteration of k iterations for solving finite element equations for
interior problems shown in Figs. 7.1 and 7.2 (in two dimensions n., = 4, and in three
dimensions n., = 8).

No. of No. of | Au product | Orthonormalization -Storage
Mesh | equations | elements [Flops] [Flops] [words]
Teg Nel 2negn?, 4kn., nen?, + 2kne,
nXxn n? n? 32n? 4kn? 2n*(8 + k)
nXxnxn n? n3 128n3 4kn® 2n3(32 + k)

. Crossover: For the two-dimensional n x n mesh, if the solution is obtained in k£ < 8
iterations the cost in operation counts of utilizing finite elements is less than that of
a boundary element method on any size mesh. If more iterations are performed, a
crossover occurs at n = 4k/(k —8), after which finite elements become more costly. In
the three-dimensional case, the cost per iteration of k iterations for solving the finite
element equations is less than that of boundary elements for any number of iterations
on a mesh of any size.

7.3.2 Exterior problems

As in the examination of direct methods, we next investigate exterior domains,
bounded internally by a physical body, for which the exact solution is unique.

Uniform discretizations

We again examine d-dimensional cubes (with d-dimensional spherical DtN boundaries
in the case of finite elements), e.g., Fig. 7.3, as counterparts of the interior examples.
Recall that no modification from the interior problems is made in discretizations
employed by boundary elements, and hence the costs in Table 7.12 are identical to
those in Table 7.10. The practical ramifications of the geometrical wave number
restriction on boundary element implementations are more severe than those stated
in the study of direct methods due to the deterioration of equation conditioning in
the vicinity of characteristic wave numbers.

Recall that finite element models of exterior problems that employ DtN boundary
conditions inherit the uniqueness of the exact solution. In these examples the DtN
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Table 7.12: Cost per iteration of k iterations for solving boundary element equations
for exterior problems with uniform discretizations. e.g., see Fig. 7.3.

No. of | Au product | Orthonormalization | Storage

Mesh | equations |  [Flops] [Flops] [words]
- Neg 4n3 /3 4kne, 2n2,
n x4 4n 64n? 16kn 32n?
nxnx6 6n? 144n* 24kn? 72n*

Table 7.13: Cost per iteration of k iterations for solving finite element equatlons for
exterior problems with uniform discretizations, e.g., see Fig. 7.3.

No. of DtN Awu product | Orthonormalization | Storage

Mesh | equations | equations [Flops] [Flops] [words]
MNeg C T 4n? dkne, 2n}?
n x4 8n 4n 64n? 32kn 32n?
nxnx6 12n? 6n? 144nt 48kn? 72n*

contribution dominates the operation count of the Au product as well as the storage
requirements (see Table 7.13, in which the non-DtN portions are neglected). Since
the DtN portion of the coefficient matrix is full and complex, and since the number
of DtN equations is equal to the number of boundary element equations, the com-
putational effort will be approximately equal for the two methods in these examples.
(The solution obtained by finite elements will be more costly by a negligible amount.).
The finite element wave number limitation (7.11), which emanates from the need
to obtain sufficient numerical wave resolution, is less restrictive than for boundary
elements, and is removed for more regular physical objects (Figs. 7.3 and 7.4) that
require identical costs. The tradeoff of relaxing the finite element numerically nondi-
‘mensionalized wave number limitation by mesh refinement at added computational
cost (cf. Table 7.6), which is impossible with the basic boundary integral equation, in
which the limitation is in terms of a geometrically nondimensionalized wave number,
- 1s applicable to iterative solvers as well.

Gradually refined discretizations

As in the study of direct methods, we now examine physical boundaries with more
elaborate geometric features, Figs. 7.6 and 7.7, in which gradual refinement of the
finite element mesh is considered. Table 7.14 shows the operation counts and storage
requirements for solving the equations associated with boundary elements.

The costs of solving the finite element equations are shown in Table 7.15. As
in Table 7.8, the internal mesh grading gives rise to expressions that are relatively
complicated. As in the previous examples, the number of equations and the number
of elements are of the same order. The number of nodes on the artificial boundary,
np, varies from being of the same order as the number of equations for relatively small
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Table 7.14: Cost per iteration of k iterations for solving boundary element equations
for exterior problems with gradually refined discretizations shown in Figs. 7.6 and 7.7.

No. of Awu product | Orthonormalization Storage
Mesh equations [Flops] . [Flops] [words]
| Neg 4n?, 4kne, 2n?,
mx 1 11n/9 | 484n?/81 4kn/9 24212 /81
nx3n x 1| 245n%/81 | 240100n* /6561 980kn? /81 120050n* /6561

Table 7.15: Cost per iteration of k iterations for solving finite element equations for
exterior problems with gradually refined discretizations shown in Figs. 7.6 and 7.7 (in
two dimensions n., = 4, and in three dimensions n., = 8; the coefficients are: 3, =

(180 + n)/81, 6, = (162 + n)/162, B5 = (13176 + 5n)/2187, &5 = (13122 + 5n)/4374).

- { No.of | DtN | No. of | Awu product | Ortho. Storage
Mesh eqns. | eqns. | elems. [Flops] [Flops] [words]
Neg np el 2nenl, +4n? | dkne, | nan?, +2(ng + kney)

nx1 Ban n bam 4n(862 + n) 4/3,kn 2n(86; + B2k + n)
nx3nx1]| Ban® | 3n? | 6n? | 4n%(3268; + 9n?) | 4B8skn? | 2n2(3263 + Bsk + 9n?)

meshes, to one order lower than the number of equations for larger meshes. This oc-
curs because the mesh on the DtN boundary need not resolve geometric details of the
physical boundary. On coarser meshes, the number of nodes on the physical boundary
1s close to the number on the artificial boundary, and hence the coupling of the DtN
operator significantly impacts the computation of the Au product and the storage
requirements, as in the exterior problems with uniform discretizations. However, as
the mesh is refined, the number of nodes on the interior boundary increases much
faster than on the exterior boundary, diminishing the influence of the DtN coupling,
and tending towards the kind of behavior seen in the interior problems, where the
. DtN operator was not present

The expressions in Tables 7.14 and 7.15 indicate a reversal in the trend observed
before. The interaction between the effects of the coupling of the DtN operator and
the grading of the internal mesh actually allow finite element formulations to gain a
computational edge for larger problems, whereas boundary elements will be less costly
per iteration for smaller problems. Recall that it is the solution of larger problems
that motivated the consideration of iterative techniques. For the two-dimensional
(n x 1) mesh, there is a crossover if k < 36

648 + 81k )

—————, Operations

648 + 180k Storage ’
36—k 8

after which finite elements become economical. (In the three-dimensional case there
is a crossover for any number of iterations, but the expressions are cumbersome and
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Table 7.16: Crossover for five iterations on exterior problems with gradually refined
discretizations shown in Figs. 7.6 and 7.7 (value of n, number of elements around the

circular circumference, at which costs are equal).

Mesh Operations | Storage
nxl1 34 50
n X3n x1 27 29

Table 7.17: Crossover for 30 iterations on exterior problems with gradually refined .

discretizations shown in Figs. 7.6 and 7.7 (value of n, number of elements around the
circular circumference, at which costs are equal).

Mesh Operations | Storage
nxl1 513 1008
nx3nxl 36 43

hence not presented here.) Boundary elements are more cost-effective on all size
two-dimensional problems in the configuration shown in Fig. 7.6 if the number of
iterations is larger than 36, but there is little likelihood that this will occur in practice.
Typically, the calculation will be restarted after a much smaller amount of iterations,
often in the vicinity of ten. Numerical values of the crossover for five iterations, also
representative of the cost with restarts approximately every ten iterations, are shown
in Table 7.16. An example of the crossover in the unlikely event of using a large
number of iterations, in this case 30, is shown in Table 7.17.

Remark: The crossover for operation counts on the three-dimensional mesh with five

iterations of 27 elements around the circular circumference is equivalent to approxi-
mately 2,200 boundary element equations. Problems of this size are still within the
range of applicability of direct methods. An iterative procedure will be effective on
larger problems, for which the finite element equations are more cost-effective.

In summary of the comparison of the iterative solution of boundary element and
finite element equations, finite element methods appear to be overall more economical
_ per iteration in the range of problem sizes that is applicable for iterative solvers, and
in the range of number of iterations that will be encountered in typical practical
implementations of iterative schemes.

7.4 Evaluation of Solution Strategies and Set-up
Costs |

Up to this point our attention has focused on the computational effort required to
solve the systems of equations emanating from boundary element and finite element
methods, by means of either direct or iterative procedures. We now examine two
other issues that effect the economics of computational acoustics: a comparison of
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Table 7.18: Crossover for solving boundary element equations of interior problems
shown in Figs. 7.1 and 7.2 (value of k, number of iterations. at which costs are equal).

Mesh Operations | Storage
nXxXmn 4(\/5/3 —1)n| equal
nxnxn|2+/15—3)n?| equal

Table 7.19: Crossover for solving finite element equations of interior problems shown
in Figs. 7.1 and 7.2 (value of k, number of iterations, at which costs are equal).

Mesh Operations Storage
nxn 64 + n%/4 — 8 n/2-8 |
nxnxn|4/1024 +n4/4 —32 | n?/2 — 32

the cost-effectiveness of the two solution strategies, and an evaluation of the effort
required to form the equations, which is non-negligible for many of these problems.

7.4.1 Comparison of direct and iterative procedures

In considering solution strategies, conventional wisdom postulates the cost-effectiveness
of direct methods for relatively small problems and of iterative procedures for larger
problems. We wish to determine the problem size at which it is economical to transfer
from one solution technique to the other. Since the number of iterations required for
convergence cannot be accurately predicted, a comparison can be made only in terms
of problem size relative to the number of iterations, rather than absolute problem
size.

Interior problems

The number of iterations, expressed in terms of number of elements per side, at
‘which the costs of directly solving boundary element equations for interior problems
are equal to obtaining a solution iteratively are presented in Table 7.18. These re-
sults are obtained by comparing Tables 7.1 and 7.10. In both cases, the crossover is
approximately equal to the number of equations.

The crossover for finite elements, obtained from Tables 7.2 and 7 11, is shown in
Table 7.19. In general it is of the order of the bandwidth.

Exterior problems with uniform discretizations

The crossover for boundary elements is identical to that obtained for interior problems
(Table 7.18), since both the direct costs (Table 7.4) and the iterative costs (Table 7.12)
for the exterior problems are equal to the corresponding costs for interior problems.
For the finite element equations, comparing Tables 7.5 and 7.5 yields a crossover that
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~ Table 7.20: Crossover for solving finite element equations of exterior problems with
uniform discretizations, e.g., see Fig. 7.3 (value of k, number of iterations, at which
costs are equal).

Mesh Operations | Storage
nx4 (\/22/3 —2)n | equal
|nxnx6]|(y/33/2—-3)n*| equal

Table 7.21: Crossover for solving boundary element equations of exterior problems
with gradually refined discretizations shown in Figs. 7.6 and 7.7 (value of k, number
of iterations, at which costs are equal).

Mesh Operations Storage
nx1 |(,/605/243 —11/9)n | equal
n X 3n x1 (1/5/3 — 1)n? equal

is still of the order of the bandwidth, see Table 7.20, even though the number of
equations is much lower than for the corresponding interior problems, since the DtN
portion dominates the computation.

Exterior problems with gradually refined discretizations

The results for boundary element equations for these problems, presented in Ta-
ble 7.21, continue the trend observed previously, that the crossover is of the order of
the number of equations.

The expressions for the crossover of finite element equatlons for these problems,
from Tables 7.8 and 7.15, are quite cumbersome and hence not presented. For both
cases, the crossover is of order n‘(for operations and storage), in contrast to the
previous examples

Employing an efficient iterative scheme, such as GMRES with scaling and pre-
conditioning, we expect the number of iterations required for the solution of well-
conditioned equations to be much less than n. Taking into account this observa-
tion, the results of this section indicate that iterative solution strategies can be more
cost-effective on all configurations of practical interest. Nevertheless, direct solvers
maintain their appeal in the range of relatively small problems, not by economic
considerations but rather due to their robustness and predictability.

7.4.2 Equation formation

We wish to evaluate the expense of the left-hand side formation which, unlike many
conventional numerical applications, is significant in most of the cases considered here.
This is due-to the costly kernel evaluation associated with boundary element methods
and DtN operators, effecting cases of finite element analysis with substantial DtN
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contributions. As a result, the number of operations required for equation formation
can be of the same order as for the iterative solution. We use as reference recent
results for Burton-Miller boundary element formulations presented in [6]. Evaluation
is based on numerical experiments rather than on theoretical operation counts, with
the caveat that results are subject to quality of implementation (which should be
~ examined) and hence subjective. ’ :

The configurations considered are fully described in [6]. Essentially, there are
two three-dimensional cases: a unit sphere and right circular cylinder with height-to-

‘radius ratio of two, each discretized by 448 linear triangular boundary elements. The

number of equations is approximately n., = 225. The cost of equation formation is

O(n2,) and we estimate the constant based on CPU timings given in [6]. First the

machine speed must be estimated. The direct solution time is 920 CPU seconds, and

since the number of operations required is 4n2 /3, the Prime 750 that is employed

is computing at about 0.0165 Mflops/second. This is a reasonable flop rate for that

machine, indicating that the implementation is fairly efficient. The constants in the

cost of equation formation may now be estimated. Set-up time for the Burton-Miller
formulation is 600 CPU seconds, corresponding to about 9.9 million flops, or 196n§q.

Forming the regularized Burton-Miller equations for direct solution requires 7000 CPU

seconds, more than 20 times greater than the original Burton-Miller formulation,

corresponding to about 116 million flops, or 2283nzq. Set-up time of regularized

Burton-Miller for iterative solvers is 940 CPU seconds, corresponding to about 15.5

million flops, or 307n'§q. The matrix multiplications required for forming A in the

regularized Burton-Miller formulation are replaced by a sequence of matrix-vector

products in iterative procedures (since A4 is not operated upon directly), accounting

for the difference between the latter two costs. However, this gives rise to several

matrix-vector multiplications in each iteration, as opposed to the single product that’
was assumed in Section 7.3, as well as significantly increased storage requirements, and

the costs presented therein would therefore have to be modified for this formulation. '
We estimate the set-up time for the DtN operator to be one half of direct boundary

element methods (due to symmetry of the DtN formulation), which is .about half
the Burton-Miller set-up time, i.e., 50n? is used. The cost of formulating the finite

element equations is dominated by the DtN portion. Since n, the number of nodes on

the artificial boundary, is no larger than the number of boundary element equations

for a given configuration, and is much less for more intricate physical boundaries, the

set-up costs for finite elements will always be lower than boundary elements, possibly

to a great extent. ’

We now compare the cost of equation formation to that of obtaining solutions for
the examples considered previously. As before we start with direct solution strategies.
An example of formation costs, the case of boundary element equations for the direct
solution of interior problems is presented in Table 7.22. (The costs of forming bound-
ary element equations for the direct solution of the exterior problems with uniform
discretizations previously considered are identical to those of corresponding interior
problems.) The costs of forming boundary element equations for direct solution are
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Table 7.22: Cost of forming boundary element equations for direct solution of interior
problems shown in Figs. 7.1 and 7.2.

No. of : Regularized
Mesh equations | Burton-Miller | Burton-Miller | Factorization .
Neg 196n2, 2283n?, 4n3, /3
nXmn 4n 3136n? 36528n° 256n°/3
nXnXn 6n? 7056n* 82188n* 288n8
equal to the factorization costs at
147, Burton-Miller 4
Meg = . ) ) (7.16)
1712, Regularized Burton-Miller

for all problems, and for smaller problems set-up costs actually dominate the compu-
tation. '

The cost of forming finite element equations to interior problems is negligible since
a DtN operator is not required. The cost for exterior problems is no longer negligible,
and for problems with uniform discretizations (e.g., Fig. 7.3) equals the factorization
cost at ne; = 120. For the exterior problems with gradually refined discretizations a
cost of equation formation of 50n? equals that of factorization at

93,
Neg =
‘ 151,

but this may be an underestimation due to additional expenses entailed by employing
elliptical artificial boundaries. In general, these results show that equation formation
is a significant portion of the cost of directly obtaining solutions to problems of
practical interest only in the case of the regularized Burton-Miller formulation.
Remark: An attractive alternative to this formulation has recently been reported in
[107]. In this work a Burton-Miller approach is employed to obtain a formulation in
which no hyper-singular kernels are integrated, by use of certain integral identities.
. The cost of evaluating the integrals and obtaining the discrete equations is thus greatly
reduced. Nevertheless, some implementational difficulties persist, such as the need to
employ C! elements. _

When iterative strategies are considered the relative cost of equation formation
increases significantly. Recall the an Au product in boundary element formulations
required 4n§q flops per iteration, in comparison to 196n§q flops required to form the
Burton-Miller equations, i.e., the cost of equation formation is equal to almost 50
iterations of Au products. As mentioned previously, the regularized formulation
requires 50% more operations to set up the equations, and also significantly increases
the cost per iteration of solving the equations. Similar results, if not quite as drastic,
are obtained for finite elements. For exterior problems an A product required 4n?
flops per iteration, or more (as in the case of gradually refined discretizations), in
comparison to 50n? flops required to form the equations.

n X'1 mesh (1.17)
n X 3n X 1 mesh |
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In summary, this study clearly demonstrates that finite element methods are eco-
nomically competitive with boundary element methods for obtaining solutions to
problems of time-harmonic acoustics. Despite the fact that boundary elements need
 less equations to discretize the same physical problem, the structure possessed by the
finite element equations often leads to an overall computational advantage. For both
direct and iterative solution techniques, finite element methods for the examples stud-
ied herein are more economical in most of the range of problem size on which either
solver is applicable. Comparing the two solution strategies demonstrates that efficient
implementation of iterative techniques has the potential of being more cost-effective
for all problems of interest, as long as the equations are well-conditioned, motivat-
ing wider acceptance of iterative strategies. This work indicates that unlike many
traditional numerical applications, set-up costs may constitute a significant portion
of the computational expense, pointing to opportunities for considerable savings by
addressing these issues alongside economizing equation-solving strategies.




Chapter 8

Iterative Solution Methods for.
Large-scale Problems

In this chapter we consider efficient methods for the solution of large-scale matrix
problems that arise from finite element methods for structural acoustics. We focus
on iterative solution methods that are applicable over a wide range of frequencies,
and characterize the robustness and efficiency of several algorithms for problems in
acoustics. We also examine special techniques to enhance the performance of these
solution strategies for analysis at high frequencies. Results from a number of numer-
ical tests on both sequential and parallel computers are presented to highlight the
performance of methods considered. ~

Finite element methods are capable of modeling problems of structural acous-
tics at arbitrarily high wavenumbers providing that an appropriate level of mesh
refinement is employed. For analyses at high wavenumbers, the necessary refinement
may lead to a large system of equations which needs to be solved efficiently and ac-
curately. Direct solution techniques become expensive for solving large systems of
linear equations due to excessive growth in computational and storage requirements.
Iterative solution strategies are an attractive alternative in these situations. Unlike
direct methods, characteristic computational kernels associated with iterative solu-
tion methods parallelize very efficiently, making them even more attractive for use on
modern vector and parallel computers. :

Gradient-type iterative methods, which are based on working with sequences of or-
~ thogonal vectors, are amongst the most effective iterative procedures for solving large
sparse linear systems and can also be very attractive for large dense matrix prob-
lems. The effectiveness of an iterative method is dependent on its rate of convergence
and the costs involved in performing each iteration. Convergence of gradient-type
methods is closely related to spectral properties of the coefficient matrix and often
preconditioners are employed to make the spectrum more favorable to faster conver-
gence. Generally, the success of an iterative method depends on the availability of a
good preconditioner and preconditioners are often observed to be problem dependent.
An important part of efficient parallelization of iterative methods is the development
of effective preconditioners that are amenable to parallelization.

For certain special problems, such as-those arising from smooth differential oper-
ators on regular domains discretized with equi-spaced grid points, special direct or

122
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iterative methods such as fast poisson solvers, multigrid or other methods may be
effective. However, in the context of adaptive solution of coupled acoustics problems
on unstructured grids most of these methods become inapplicable and hence they are
not considered here.

8.1 [Iterative Solvers for Indefinite Systems

For solving Hermitian positive definite (HPD) systems the classical Conjugate Gra-
dient (CG) algorithm [65] is amongst the most effective iterative methods because of
its low work and storage requirements per iteration and good convergence properties.
However, problems in acoustics discretized using finite element or boundary element
methods give rise to non-Hermitian indefinite systems. In such cases a good choice of
an iterative method is not so clear and various approaches exist. For a nonsingular
matrix A, the normal equations given as A% Az = A¥b are HPD and can be solved us-
ing preconditioned CG method. We denote this approach by CGNR. This approach,
in fact, is not practical because the normal equations have a condition number which
is square of the condition number of the original system and this typically leads to
unacceptable convergence rates [14].

Amongst the more recent gradient-type algorithms for non-Hermitian problems
there are essentially two different approaches. One approach is based on explicitly
computing and storing a sequences of orthogonal vectors, V,, = {v;, v, ..+ Un}, that
can be combined using a least-squares solve to generate iterates that have minimal
residual in the subspace spanned by V; this leads to the Generalized Minimal Resid-
ual method (GMRES) [127]. Due to the requirement to store the entire sequence of
vectors the GMRES method becomes expensive. Restarted versions of the method’
are used in practice to limit storage and computation costs. However, convergence of
the restarted algorithm is often slow and also sensitive to the number of orthogonal
vectors stored.

The other approach involves using the unsymmetric Lanczos process to generate
two sequence .of vectors that satisfy a bi-orthogonality condition. The method of
Bi-Conjugate Gradients (BiCG) is based on using these vectors to obtain iterates by
enforcing a Galerkin-type condition on the residuals [32]. The advantage of such an
approach is that, unlike GMRES, only a limited amount of work and storage is needed
per iteration. However, the residuals of BiCG iterates display irregular convergence
and the method can sometimes experience numerical breakdowns [32]. Recently, Fre-
und and Nachtigal [39] have proposed a new approach, the Quasi-Minimal Residual
method (QMR) which applies a least-squares solve and update to the BiCG resid-
uals, thereby smoothing out the irregular convergence behavior of BiCG. A special
implementation of QMR (with “look ahead”) also eliminates any sources of possible
breakdown in the BiCG approach.

Before selecting an iterative method, it is important to characterize matrix prob-
lems that arise in finite element methods for acoustics. In the case of interior problems,
finite element discretizations lead to real symmetric but indefinite matrices. For such

systems the MINRES and SYMMLQ methods [119] are applicable. These methods
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are somewhat restrictive as they allow the use of only positive definite preconditioners.
At wavenumbers close to the square-root of the eigenvalues of the discrete Laplacian
operator, the conditioning of the interior problems deteriorates considerably. In such
cases preconditioning becomes essential. Since QMR allows the use of nonsingular in-
definite matrices as preconditioners it is more effective for such problems. The general
QMR method can be particularized to the symmetric indefinite case thereby reducing
its work and storage costs to a level similar to those associated with MINRES and
SYMMLQ [38]. _ .

For exterior problems the introduction of radiation boundary conditions changes
the fundamental nature of the matrix problem. The matrix contribution of the non-
local DtN radiation condition, Ap:n, is fully populated and complex-symmetric i.e.
Ap:n = A%, n- Exploiting complex-symmetry in non-Hermitian systems is crucial for
Lanczos based iterative methods because it reduces the storage and computational
requirements to half of those needed for solving general non-Hermitian systems. A
comparison of number of operations and storage required at the k-th iteration for
solving exterior problems is summarized in Table 8.1.

Table 8.1: Computation and storage (in words) costs for solving complex-symmetric
systems of size nxn. Computation costs are in terms of number of inner products,
vector updates, matrix-vector products and transpose products required in the k-th
iteration. o

Iterative Method | Operations per Iteration | Storage
zly | az +y | Ap*,ATp* | Required
CGNR) 2 3 1.1 i
GMRES k+1 | k+1 1,0 (k4+5)n
BiCG 2 3 1,0 4n
QMR 2 4 1,0 5n

A significant impact of exploiting complex-symmetry is that QMR and BiCG do
not need-to compute a transpose product ATp*, which is required in the case of non-
Hermitian versions of these algorithms. The above comparison indicates that, unless
less k¥ < 2, BiCG and QMR are more efficient than GMRES in terms of storage
and computing costs per iteration. In contrast to finite element equations which are
complex-symmetric, boundary element methods lead to non-Hermitian matrices. In
that situation BiCG and QMR algorithms may lose the above advantage.

8.2 Performance of Iterative Solvers

In this section the convergence characteristics of various iterative solvers for some
typical acoustics problems in interior and exterior domains are studied. Numerical
results demonstrate the robustness and superior convergence properties of QMR for
solving such problems. No preconditioning is used in Examples 1-4. The effects of
preconditioning are discussed in the next section. |
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Ezrample 1. An interior Dirichlet problem.

Consider the solution of Helmholtz equation on a square domain of unit side,
a = 1, with homogeneous Dirichlet boundary conditions on all edges. A source distri-
bution of unit intensity in the domain is taken as the forcing function. The domain
is discretized using bilinear GLS finite elements with 80 elements along each edge,
such that frequencies examined are well within the resolution limit. The symmetric-
indefinite QMR algorithm is employed and iterations are stopped when the relative

residual norm satisfies “%:Hf <1077,
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Figure 8.1: Convergence curves for interior problem at ka = 0,7 /2 and 7.

Convergence curves for various frequencies of analysis (see Fig. 8.1) illustrate that
QMR displays smooth convergence behavior with almost monotonically decreasing
residuals. As the frequency of analysis is increased from ka = 0 to 7 the total
number of iterations required for convergence also increase steadily. This indicates a
decreasing rate of convergence of the iterative solution method as the matrix problem
becomes more indefinite. Such behavior is also observed in solving exterior. problems
as we will see in Example 4.

Next, we compare the performance of CGNR, BiCG, QMR and- GMRES(m) al-
gorithms for some typical exterior problems of radiation and scattering. GMRES(m)
denotes the restarted GMRES algorithm with a maximum of m iterations before each
restart. Different values of the parameter m are chosen in order to study its effect on
the rate of convergence.

Ezample 2. Two-dimensional radiation from a rigid infinite cylinder.

Consider a rigid infinite cylinder of radius @ submerged in an infinite acoustic fluid.
The DtN radiation boundary is applied, at radius r = 24, to obtain a finite compu-
tational domain given by a < r < 2a and 0 < @ < 2r. This computational domain is
discretized with a uniform mesh which has 20 radial and 64 circumferential bilinear
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Figure 8.2: Finite element mesh consisting of 1280 bilinear elements for radiation and
scattering problems studied in Examples 2-4.

elements, Fig. 8.2. Dirichlet boundary conditions corresponding to uniform radiation
in the zeroth and fourth circumferential modes are prescribed on the wet surface of
the cylinder. The two problems are solved for a non-dimensional wavenumber of ka
= 7.

Figure 8.3 shows the convergence characteristics of a number of solution methods
for analysis of the zeroth harmonic radiation pattern. Iterative methods based on the
Lanczos process, BiCG and QMR, display superlinear convergence and require only 20
iterations to converge, to a tolerance of 10~%, which is exactly the number of distinct
eigenvalues of the coefficient matrix. Performance of GMRES(5) and GMRES(15)
iterations indicate loss of superlinear convergence behavior due to frequent restarts.
However, convergence of the GMRES algorithm without any restarts is as.fast as
BiCG and QMR. These results indicate a strong dependence of the rate of convergence
of GMRES on the choice of restart parameter m. Similar conclusions hold for analysis
of the fourth harmonic radiation pattern, as shown in Fig. 8.4.

- Ezample 3. Two-dimensional radiation from panel of a rigid infinite cylinder.

The case of non-uniform radiation due to vibrations of a panel of the rigid cylinder
is a more complex numerical problem due the presence of an infinite number of modes
in the solution. We consider the same geometry and discretization as in Example 2.
The boundary condition on the wet surface consists of unit Dirichlet data specified on
the sector —7 /12 < 6 < 7/12 and homogeneous Dirichlet data on the remaining part.
Convergence curves in Figure 8.5 show that BiCG residuals exhibit some oscillatory
behavior while QMR has a smooth and almost monotonic convergence behavior. The
convergence of restarted GMRES iterations, GMRES(5) and GMRES(20), is much
slower than QMR. Since the solution consists of a very large number of modes, the
choice of parameter m at which convergence of GMRES becomes acceptable may
require a prohibitive amount of storage for such classes of problems.
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Figure 8.3: Convergence curves for radiation from rigid cylinder in 0% harmonic,

ka =m.

Ezample /. Plane wave scattering off a rigid infinite cylinder in two dimensions.
The scattering of plane waves from a rigid cylinder leads to boundary value prob-
lems with purely Neumann boundary conditions. We characterize convergence for
such problems using the same geometry and discretization as used in Example 2. For
this case, the normal derivative of the incident field is prescribed as Neumann data
on the wet surface of the cylinder. Results for analysis at ka = 7 are presented in
Figure 8.6. Observe that BiCG residuals suffer rapid fluctuations, whereas the con-
vergence behavior of QMR remains smooth. The restarted GMRES and the CGNR

methods are once again not competitive with QMR.
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Figure 8.4: Convergence curves for radiation from rigid cylinder in 4** harmonic,

ka=r7

In order to examine the effect of frequency, the scattering problem is reanalyzed
with plane waves incident at higher frequencies. As frequency is increased, the eigen-
spectrum of the coeflicient matrix shifts towards the left half of the complex plane
resulting in a larger number of eigenvalues that have negative real components. Nu-
merical results corresponding to analysis over ka = 7 to 47 are shown in Fig. 8.7
and indicate that convergence of QMR deteriorates under these circumstances. A
more refined mesh with 9000 bilinear elements was used in this case to achieve an
appropriate level of resolution at ka =4x. The requirement to employ finer meshes
at increasing frequencies leads to a decline in conditioning of the coefficient matrix
which further slows convergence (compare curves for ka = 7 in Fig. 8.6 and 8.7).
These results motivate the need for effective preconditioning, especially for analyses
at higher frequencies. |

8.3 Preconditioning for the Helmholtz Operator

Convergence of gradient-type methods depends on the condition number of the coef-
ficient matrix A and the distribution of its eigenvalues. To i improve convergence of
such methods, a preconditioner M is employed such that M~ A is better conditioned,
and linear systems with coefficient matrix M are easy to solve. The construction of
preconditioners that simultaneously satisfy these two criterion and which are also
suitable for implementation on parallel computers is often difficult.

We first consider some common preconditioning methods:

1. The diagonal preconditioner, Mp = diag(A), is the simplest preconditioner.
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Figure 8.5: Convergence curves for radiation from panel of rigid cylinder.

2. The SSOR preconditioner is given by Mssor = (D +wL)D™Y(D + wU), where
A=L+D+VU, and w is a design parameter.

3. Incomplete Cholesky factorization preconditioners [113] which are based on ap-
proximate factorizations of A in order to limit the amount of fill-ins.

Although preconditioners based on incomplete factorization are quite effective
in reducing the number of iterations, significant computational effort is required to
initially construct them. Moreover, both the construction and the application phases
of these preconditioners parallelize poorly on massively parallel computers, such as the-
Maspar MP-1 or the CM-2 [16], and as a result often only diagonal preconditioning is
used in such cases. However, diagonal preconditioners are not effective for acoustics
problems, providing little improvement in convergence rates. ' '

For effective preconditioning of the Helmholtz operator we examine a novel ap-
proach which is based on an understanding of the properties of finite element approxi-
mations for second order elliptic differential operators. For finite element formulations
arising from piecewise linear shape functions, it can be shown that the spectral condi-
tion number of a discrete second order elliptic operator grows as O(h~?). However, by
using hierarchical basis functions [157] in place of nodal basis functions, the growth in
condition number of the discrete system can be significantly reduced to O(logh=!)2.
This idea was exploited for developing preconditioners for the case of self-adjoint,
positive definite second order elliptic boundary value problems by Yserentant [157]
and extended to the case of nonsymmetric operators that also satisfy the positivity
condition [156].

However, the Helmholtz operator is not positive definite but satisfies a Garding
type inequality. For such problems convergence of Galerkin methods requires that
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Figure 8.6: Convergence curves for plane wave scattering from rigid cylinder at ka =
.

the characteristic grid size of the mesh on which the problem is solved be less than
some threshold value [129]. Under these circumstances, construction of hierarchical
basis functions that preserve the approximation property of the chosen discretization
while improving the conditioning of the discretization matrix is not assured. We
show through numerical experimentation that the hierarchical basis formulation can
also be applied profitably for solving acoustics problems in both interior and exterior
domains. ‘ ‘

‘Hierarchical basis functions are associated with a multilevel splitting of the finite
element mesh on which the problem is solved. Figure 8.8 illustrates a one-dimensional
mesh with nodal basis consisting of piecewise linear functions and a splitting of the
mesh into multiple levels. The hierarchical basis on such a splitting can be defined

‘as follows: (1) basis functions at the coarsest level, Level 1, consist of the nodal basis

functions, and (2) the hierarchical basis at any level j consists of nodal basis functions
corresponding to nodes in that level which are not present in any of the coarser levels,
together with the hierarchical basis for level j-1. This recursive definition leads to a
set of basis functions which are complete and unique, and also provide the desired
improvement in conditioning of the discrete operator.

Hierarchical basis functions do not possess compact support which is character-
istic of nodal basis functions. Therefore coefficient matrices based on hierarchical
basis, Ay, are likely to be much less sparse than the nodal matrices Ay. However,
the explicit computation of Ay can be avoided by using a transformation which maps
the hierarchical basis represéntation of a function to its nodal representation. This
transformation can be used in a special way, as described below, to construct a pre-
conditioner. _

Let u(z) be a function approximated on a given grid of n unknowns (or degrees
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Figure 8.7: Convergence curves for scattering from rigid circular cylinder using a finer
mesh with 9000 bilinear elements, ka = 7,2, 37, 4~.

of freedom) using nodal, ¢V, and hierarchical basis functions, ¢, as follows:

u@) = el

i=1
n

H  H

u(z) = Ezi ¢;
=1

Let zy = {2V, 2], ..., 2]}, be the vector of coeficients in the nodal basis, and zy

= {zf', 2, ..., zH} in the hierarchical basis. Let S be the linear transformation such
that zy = Szy. Then it can be shown [157] that Ay = STANS.

Now consider solving the finite element equations, Ayzy-= by, arising from
the nodal basis representation. Let this system be preconditioned using the matrix

M = MpMpg in the following way,
MEIANMEIMR:BN = MEle.v

In this form, matrices My and Mg are the left and right preconditioners respectively.
If we choose M;' = ST and Mz' = S then the preconditioned matrix becomes
STANS. In this way the hierarchical basis preconditioner, Myg = (SST)-1, trans-
forms Ay to Ay. Frequently, it is advantageous to combine diagonal scaling with
Mpyp, so that Mpgpe = SD™1ST [48).

To save storage and computation costs, the matrices S and S7 are not computed
explicitly but their product with a vector is obtained using neighbor-neighbor con-
nectivity data between successive levels of the hierarchical basis grids [157]. This
involves only limited amount of additional storage of O(n) integer words and O(n)
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Figure 8.8: (a) Nodal basis associated with a 1-D mesh; (b) A multilevel splitting of
the mesh and hierarchical basis functions associated with this splitting.

computations. Moreover, these computations can be done in j data parallel steps on
a massively parallel machine, where j is the total number of levels in the multilevel
splitting.

It is also noteworthy that the preconditioners. Myp and Mygps are not based on
a “splitting” or “factorization” of the coefficient matrix and hence do not explicitly
require the matrix Ay. Iterative solution strategies on massively parallel computers
often employ “matrix-free” approaches [86] to fully exploit the high degree of data
parallelism intrinsic in finite element computations. In such cases, the coefficient ma-
trix A is never explicitly formed and due to this usual preconditioners entail signifi-
cant storage and computational overheads. However, matrix-free iterative strategies
can very naturally be combined with the hierarchical basis preconditioner to achieve
highly efficient data parallel iterative solution algorithms suitable for contemporary
parallel computers. We have exploited these characteristics of the preconditioning
algorithm in our data parallel structural acoustics code developed on the Maspar
MP-1. , : :

Numerical Results ‘ -

Results from a number of numerical tests are presented to demonstrate the effec-
tiveness of the hierarchical basis preconditioner on both serial and parallel computing
platforms, and characterize conditions under which the preconditioner is most effec-
tive. Preconditioned QMR algorithms are used for iterative solution of all matrix
problems considered here.

Ezample 5. An interior Dirichlet problem.

We consider the interior square domain problem introduced in Example 1. The prob-
lem is solved on a uniform grid of 6400 elements, with 80 elements along each edge.
The multilevel splitting associated with this mesh consists of 5 levels with the coars-
est level consisting of 5 elements per edge. Intermediate levels are obtained through
repeated uniform refinement of the coarsest mesh.

Table 8.2 shows a comparison of the number of iterations required for convergence
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Table 8.2: Number of iterations to convergence for the interior problem.

Wavenumber ka | 0 | /6 | 2/6 | 37/6-| 47/6 | 57/6 | = -
My 97 | 114 | 117 | 128 | 138 | 158 | 167
Mp 97 | 114 | 117 | 128 | 138 | 158 | 167
Mssor 55| 56 | 56 60 66 0 | 72
Muygsps 381 39 40 40 40 42 42

to a tolerance of 10~7 using various preconditioners. We denote the unpreconditioned
algorithm by M; = I, where I is the identity matrix. Observe that for any given
frequency, diagonal preconditioning is totally ineffective whereas hierarchical basis
method gives the lowest iteration count. As the frequency of analysis is increased,
the iteration counts for Mypps show only a slight increase.

To further examine the effect of increasing frequency and decreasing mesh size on
convergence, we study a problem of practical interest namely the scattering of plane
waves from an elongated body in an exterior domain. ’

Ezample 6. Two-dimensional plane wave scattering.

Consider the scattering of plane waves from a rigid cylinder with conical-to-spherical
end caps and a large length to diameter ratio, I/d = 8.0 (see Fig. 8.9). The DtN
radiation condition is applied at radius R = I. We consider incoming plane waves to
be incident along the length of the cylinder and study 3 different wavenumber cases,

kd ==n/6,7/2, 7.

Figure 8.9: Plane wave scattering by cylinder with end caps in 2D.

The effect of mesh refinement is examined first by choosing a constant frequency
of analysis, kd = 7 /6, and solving the problem on four successively refined meshes.
An initial coarse mesh of 3x16 elements (radial x circumferential elements) is used
for constructing the hierarchical basis associated with all four meshes. Intermediate
mesh levels are obtained by successive uniform refinement of this coarse mesh. Fig-
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Figure 8.10: Multiple grid levels for the scattering example: Clockwise from top left
are meshes with 64, 224, 3200, 12544 and 832 unknowns.
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ure 8.10 shows meshes which are used as coarse, intermediate or finest grid levels in
the following numerical tests.

Table 8.3: Number of iterations for convergence to 107 for plane wave scattering,
kd = 7 /6.

Mesh Unknowns kd M] MD MSSOR HB Levels MHBDS
12 x 64 832 w/6 | 124 | 116 57 3 56
24 x 128 3200 286 | 244 105 4 70
48 x 256 12544 392 | 468 197 - 5. 83
96 x 512 49664 1372 | 1083 - 6 102

Table 8.4: Elapsed time (in séconds) for computing matrix-vector pfoduct and for
preconditioning in each iteration of QMR on a Sun SPARCstation10.

Mesh Unknowns | Matvec | Mp | Mssor | Mysps
12 x 64 832 0.34 0.001 0.51 0.03
24 x 128 3200 3.8 0.01 54 0.09
48 x 256 12544 50.7 0.6 71.0 0.73

Table 8.3 summarizes the number of iterations required for convergence to a tol-
erance of 107 using various preconditioners. Observe that the unpreconditioned
algorithm suffers substantial deterioration in iteration count with decreasing mesh
size and use of Mp yields little improvement. The hierarchical basis method is most
effective in reducing total number of iterations. Although Mssog is competitive in
reducing iteration counts, it requires significantly more computations and is therefore

much more expensive than. Mygps, see Table 8.4. A comparison of actual pre-.

conditioning times illustrates the superiority of Mygps on both serial and parallel
platforms (Table 8.4 and 8.5). /

Next, we study the effect of increase in frequency on performance of the hierar-
chical basis preconditioner. Table 8.6 shows the number of iterations to converge as

Table 8.5: Elapsed time (in seconds) for computing matrix-vector product and for
preconditioning in each iteration of QMR on a Maspar MP-1 with 8192 Processors.

Mesh Unknowns | Matvec | Mp | Mugps
24 x 128 3200 0.098 | 0.023 0.15
48 x 256 | 12544 0.219 | 0.048 | 0.270
96 x 512 49664 0.640 | 0.125 | 0.990
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Table 8.6: Number of iterations for convergence to 10~7 for plane wave scattering at

kd=7/2,7. .
Mesh ‘Unknowns | kd | M; | Mp | Mssor | Coarse Mesh | HB Levels | Mygps
12 x 64 832 /2 | 211 | 205 117 6 x 32 2 143
24 x 128 3200 465 | 451 201 ' -3 162
48 x 256 12544 1023 | 876 334 4 187
96 x 512 49664 2338 | 1844 - 5 214
24 x 128 3200 Ve 724 | 715 418 12 x 64 2 469
48 x 256 12544 1533 | 1377 587 3 506
96 x 512 49664 3452 | 2972 - 4 564

Table 8.7: Effect of combining HB transformations with a coarse level solve on the
number of iterations to converge.

Mesh Unknowns | kd | Coarse Mesh | HB Levels | Mygps | MuBcs
24 x 128 3200 /6 3x16 4 70 62
48 x 256 12544 5 83 78
96 x 512 49664 6 102 96
24 x 128 3200 /2 6 x 32 3 162 84
48 x 256 12544 4 187 109
96 x 512 49664 5 214 134
24 x 128 3200 T 12 x 64 2 469 96
48 x 256 12544 3 506 143
96 x 512 49664 4 564 175

the wavenumber is increased to kd = 7 /2 and then 7. The performance of Mypps
remains quite favorable as the wavenumber increases. However, notice that a different
coarse mesh is chosen as the frequency is increased. This is due to the necessity to
maintain the approximation property of the associated hierarchical basis functions. A
decrease in size of the coarse mesh results in some increase in the number of iterations
required for convergence. _ ‘

"To counter the effect of conditioning associated with nodal basis representation of
the coarse initial mesh, we form the preconditioner Mgpog = S(LLT)~157, where the
action of (LLT)~! represents an approximate solution of the coarse level unknowns.
This preconditioner leads to a distinct reduction in iteration counts as the coarse mesh
size decreases, see Table 8.7. However, the coarse solution procedure lacks parallelism
and a reduction in iterations may not necessarily reduce actual computation times.
Further work is needed to investigate efficient means of accelerating this step.

Selection of multiple levels

An important ingredient in the success of the hierarchical basis preconditioners is
the choice of a multilevel splitting associated with the finite element mesh on which
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Figure 8.11: Scattered pressure field at radiation boundary with different discretiza-
tions at kd = 7 /2.

the problem needs to be solved. For indefinite problems it is essential that the coarse
mesh size be sufficiently small in order to maintain the approximation property of
basis functions. Results of numerical tests reveal that a coarse mesh with a resolution
of khe < 7 (h. is the characteristic size of the coarse mesh), which corresponds to just
two elements per wavelength, performs very well. Standard guidelines for creating
discretizations on which the problem should be solved suggest using at least ten
elements per wavelength or kk < 0.6 where A is characteristic size of the finest mesh
on which the problem is solved. Figure 8.11 shows the resolution of acoustic pressure
on the DtN boundary by employing successively refined meshes for the scattering
example at kd = 7 /2. The resolution capabilities of different meshes clearly indicates
. that sufficient opportunity exists to construct intermediate levels of meshes between
a coarse level that satisfies the condition kk. < 7 and the finest level of discretization
required for sufficient accuracy. .

 The nested family of grids required for forming the preconditioner can be con-
structed through uniform or adaptive refinement of an initial mesh. This process
can be integrated with multiple frequency analyses in such a way that as frequency
increases the coarsest mesh is updated by combining initial few mesh levels and the
additional grid points needed for resolution are obtained from adaptive refinement
based on a-posteriori error estimates.

Numerical results presented in this chapter demonstrate the superiority of QMR
over other gradient-type iterative methods for solving problems in acoustics. The hier-
archical basis preconditioner, based on a careful selection of the associated multilevel
splitting, and employed in conjunction with QMR results in a very efficient iterative
strategy for solving large-scale acoustics problems on massively parallel computers.
Current results are based on the effectiveness of these algorithms for uncoupled prob-
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lems in two-dimensions. It is expected that the iterative solver and the proposed
preconditioner will also prove effective for the coupled problem. Extension to three-
dimensional problems needs further investigation.




Chapter 9

A Posteriori Error Estimation and
Adaptivity | |

It was shown in Chapter 5 that the Galerkin method provides good phase and am-
plitude accuracy as long as the mesh is fine enough with respect to the wave number.
However, “fine enough” is often too expensive for adequate resolution, even for moder-
ate wave numbers. This motivated development of the Galerkin Least-Squares (GLS)
method for the Helmholtz equation, which provides accuracy and stability with fewer
mesh points. Results verifying this assertion for various model problems were shown
in Chapter 6. : -

A second mechanism for enhancing accuracy is adaptivity, and is the subject of
this chapter. Adaptivity involves distributing mesh degrees of freedom as efficiently
as possible, i.e., placing more nodes where solution errors are large and fewer nodes
where errors are small. The effect is a reduced problem size for a given level of accu-
racy. This can be accomplished by locally changing the element size (h-refinement),
spectral order of the finite element shape functions (p-refinement), or a combination
thereof (hp-refinement). Here we consider only h-refinement.  The focus of adaptivity
is on technologies occurring outside the finite element solver. These include mesh
generation (or some way to locally refine the mesh), a posteriori error estimation,
and an adaptive strategy.’ : : '

Adaptivity works essentially as follows: A spatial error distribution is computed
from the finite element solution, using the a posteriori error estimator. The adaptive
strategy computes a new mesh size distribution from the estimated error, and the
mesh generator uses this information to construct a new, or adaptive mesh, on which
an improved finite element solution can be obtained. This process repeats until some
criterion for convergence is met. For mesh generation we use an advancing front code
written by Jaime Peraire; the advancing front method is described in [122]. The
a posteriori error estimator and adaptive strategy were derived specifically for the
Helmholtz equation and are presented herein.

In Section 9.1 we present the error estimator, adaptive strategy and numerical
results for the Galerkin method. Of particular interest is the effect of adaptivity in
combination with GLS; this is examined in Section 9.2. In Section 9.3 the role of
adaptivity in reducing the cost of computation is addressed. The numerical examples
throughout this chapter involve the problem of non-uniform radiation from a rigid

133
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infinite circular cylinder, which was also used in Chapter 6 to show GLS computations.

9.1 Adaptivity for the Galerkin Formulation

The purpose of the a posteriori error estimator is to provide a local estimate, or
indication of, the solution error e = ¢" — ¢ in some norm. The choice of norm is
restricted somewhat because the Helmholtz operator is not positive-definite; thus an
energy norm does not exist. Therefore a posteriori error estimators which measure
error in’'an energy norm or otherwise assume positive-definiteness [4, 5, 10, 11, 99]
cannot be applied in a straightforward manner. Hsiao, et al [67] derive a residual- -
based a posteriori error estimator for the boundary integral equations, utilizing the
natural norms of the operator and the solution. In particular, the residual measured
in the H'/?> norm approximates the error in the H~*/2 norm. Computation of the
residual in the L, norm results in underestimation of the error (in the H~*/? norm).
The error estimator we present for the Helmholtz equation was derived using a
recipe developed by Johnson, et al, in the context of model elliptic and advection-
diffusion equations (see, for example, [92, 90]). The error estimator does not assume
positive-definiteness of the operator, and provides an upper bound on the L, norm of
the error. It is also residual-based, making it easily applicable to general unstructured
meshes. The error bound is given by

lell < C1 [[1B?r*] 1, @) + 1B R |, q) (9.1)

where C} is a constant, h is a measure of element length, and r* and R" are resid-
uals. The subscript L,({?) denotes integration over element interiors. Details of the
derivation of (9.1) appear in [140]. An important assumption here is that ¢* was
obtained using the Galerkin method. The first term on the right hand side of (9.1)
is the error contribution from element interiors, and the second term is the error
contribution from element boundaries (which is assigned a constant value over each
element interior for the purpose of computing the norm).
The residial on element interiors, r*, is given by

7,h : f + v2¢h + k2¢h (9.2)

The element boundary residual, R, is defined as
R*|yc = max max(jr3|) (9.3)
where
3.1 on S C K
h —ikh Scr
Borb(oh) =  Pm =2 on h
wT2() =V gk _(CMéh  on §C 9Ba (.4)
L0 on SCI,

In two dimensions, S denotes an element edge and 8Ky, denotes an interior mesh
edge belonging to element K. In words, (9.3) states that R* on element K is the
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maximum value of the boundary residual, r5. over all the edges (i.e., the boundary)
of the element. The boundary residual involves a jump in the normal derivative of ¢
across interior edges, which emanates from the use of C°-continuous shape functions.
In addition, (9.4) naturally encompasses the DtN boundary condition on dBg. It
is assumed that on I'; the given data is exactly representable by the finite element
functions, i.e., g € V.

The a posteriori estimate of the solution error, by itself, is not enough information
for an adaptive analysis to be performed. An additional step, which we refer to as
the adaptive strategy, is necessary to translate the estimated error into requirements
for an improved, or adaptive, mesh. The adaptive mesh is not generated in this step;
the sole purpose of the adaptive strategy is to obtain a new element size distribution
(in the case of h-refinement) for the adaptive mesh, given the estimated error on the
current mesh.

For adaptivity we require an estimate of the error distribution, not an absolute
value of the error. We therefore choose to ignore the constant C; appearing in (9.1)
by absorbing it into the left hand side. This changes the error magnitude but not the
relative error distribution. The scaled error, denoted by &, is given by

_ def .
€ = ||h27‘h”L2(ﬁ) + ||h2Rh||L2(ﬁ) (9.5)

where
llell
O
The error estimate (9.5) is in terms of a global norm. We wish to use this error
estimate to define a new element size distribution, which constitutes the specification
of element sizes locally. It is therefore necessary to extract local error information
from the global error bound, which is accomplished by extracting (approximately)
an element contribution to the error estimate. The estimated error in element K is
given by »
ex ¥ [I%rkld, + [1R%RE 1A, ] (96)
We choose an adaptive strategy which equidistributes the error in each element of
the new mesh. That is, we must specify a new element size distribution such that &
in the adaptive mesh solution is the same in each element K of that mesh. The new
element size is denoted by Anew and is specified as a function of the spatial location
k. In terms of g, hx, and a user-input element error tolerance &, (which is the

target element error for the new mesh), Ay, is given by

s \1/3

hnew(wh") = (@) / hK ’ (97)
€K

This refinement scheme is derived from heuristics, based on the dependence of éx on

hx. Details are provided in [140].

In practice, hpew is computed for all K and stored at the nodes. The advancing
front mesh generator [122] then interpolates Apey from the current mesh in produc-
ing the new, adaptive mesh. This process entails global mesh regeneration for each
adaptive mesh. The meshes consist of linear triangles.
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The goal of adaptivity is to drive the solution error down to a given tolerance in an
optimal manner. A complete adaptive solution consists of a sequence of three to five
meshes, usually starting from a relatively coarse uniform mesh. Trying to achieve the
error tolerance in a single adaptive step would result in over-refinement, since the error
on the initial mesh tends to be spread out over the larger elements. A conservative
strategy which grossly under-refines would likewise be inefficient, requiring too many
meshes for sufficient resolution.

The numerical example we present is the problem of non-uniform radiation from a
rigid infinite circular cylinder, with a nondimensional wave number ke = 27 (a is the
radius of the cylinder). Solutions are obtained using the. Galerkin method. Dirichlet
boundary conditions are applied to the cylinder surface; the portion —57/32 < a <
+57/32 is assigned a unit value, while the remaining portion is assigned a homoge-
neous value. The DtN boundary is located at R = 2a.

The solution was computed on a sequence of five meshes. Fig. 9.1 shows the real
part of the solution along with the corresponding mesh, for the first, third and fifth
meshes. The computation begins with a coarse uniform mesh, while the subsequent
adaptive meshes were obtained by gradually decreasing the element error tolerance,
€01, The solution becomes highly attenuated to the left of the cylinder, and the
error estimator records a very small error there. This is reflected in the third mesh,
as the adaptive strategy computes a large element size. The refinement capturing
the radiated. wave is also evident in the third mesh. This problem contains highly
localized features, namely the discontinuities in the boundary values at o = +57/32.
It can be seen in the fifth mesh that they are efficiently captured. A high degree of
refinement exists at the discontinuities, and a lesser degree of refinement resolves the
radiated wave. The mesh gradually coarsens towards the left side of the cylinder,
efficiently adapting to the attenuating solution.!

Fig. 9.2 shows the final adaptive mesh and a uniform mesh with nearly the same
number of elements. Alongside the full mesh is an enlargement of the region near
the upper boundary condition discontinuity. The elements in the uniform mesh are
extremely large in this region compared to the adaptive mesh, leading to a relatively
poor resolution of the discontinuity. This contributes to a global error (||e|| = 3.8%)
over three times greater than that in the adaptive mesh (|le|| = 1.2%). The percent
error is defined as ||e||/||d)|| x 100.

Convergence with increasing number of elements is shown in Fig. 9.3, compar-
ing the adaptive and uniform mesh (exact) errors for the entire sequence of mesh
refinements. Recall the analytical solution is given by (6.71); the number of elements
in the mesh is denoted by ne. To get an idea of required mesh sizes for further de-
creases in error, linear fits of the convergence data are also shown. The slopes of these
lines, indicated in the figure, show that the convergence rate of adaptive refinement
is roughly the same as the convergence rate of uniform refinement. It is easily seen
that the uniform mesh requires a much larger number of elements to achieve a given

INote the boundary condition g ¢ V*, which violates the assumption in (9.4). Nonetheless,
as seen in foregoing results, the error estimator has enough robustness to adapt to the boundary
discontinuities. As the mesh is refined, the approximation of g improves.
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Figure 9.1: Real part of solution along with corresponding ‘mesh, showing the initial
mesh (184 elements, 124 nodes), third mesh (797 elements, 458 nodes) and final (fifth)
mesh (2791 elements, 1521 nodes) of the adaptive sequence.
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Figﬁre 9.2: Final adai)tive mesh (ﬁfth mesh in adaptive sequence; 2791 elements,
llell = 1.2%) and uniform mesh (2792 elements, ||e|| = 3.8%), along with detailed
view of meshes in region of upper boundary condition discontinuity.
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error tolerance, compared to the required adaptive mesh size. For example. to attain
lefl = 1% requires just under 4,000 elements in the adaptive mesh, but over 13,000
elements in the uniform mesh.

Remarks:

1. Convergence studies are often presented in terms of the mesh parameter, or
element size, h, as it asymptotically approaches zero. The definition of h be-
comes confusing, however, in adaptive meshes where h can vary considerably
throughout the mesh and approach zero at different rates. For this reason it
is more convenient to present convergence studies in terms of ng. An intuitive
conversion from neg to A can be made for uniform mesh convergence. In two
dimensions, ne is proportional to 1/h%. Therefore, the slope of —0.91 indi-
cated in Fig. 9.4 roughly translates to a slope of 42 if ||e| is plotted versus
h. In other words, the error decreases as the square of k, which is the optimal
rate of convergence for the Galerkin method. Since the slope of ||| vs. ng for
adaptive refinement is —0.93, it is concluded that optimal convergence is also
obtained in this case. The effect of adaptivity then is to reduce the constant of
proportionality between solution error and problem size.

o

For computing the exact error, 200 terms were used in the series given by
(6.71). This provided a reasonable approximation of the discontinuities on the
wet surface at @ = +57/32, where the series converges to the average value
¢ = 0.5 (note that the term “discontinuities” is used loosely — the truncated
series representation of them is actually smooth but very steep). To provide
consistency and meaning to the term “exact error”, the truncated series solution
was used as the Dirichlet boundary condition. In addition, a node was fixed at
each discontinuity and assigned a value ¢* = 0.5. This was found to be critical
when the mesh is refined enough for the overall error to be dominated by the
error at the discontinuities. The effect of not fixing nodes there is discussed in
[140].

3. Note that the boundary condition ¢ ¢ V", which violates the assumption in -
(9.4). Nonetheless, as seen in foregoing results, the error estimator has enough
robustness to adapt to the boundary solution. As the mesh is refined, the
approximation of g improves. With respect to the analytically discontinuous
problem, i.e., the problem described by computing an infinite number of terms
in the analytical solution, the only error incurred by the piecewise linear repre-
sentation of g would be at the two discontinuities. With respect to the truncated
series form of the analytical solution, additional error (assumed to be small) is
incurred away from the “discontinuities”. '

9.2 Adaptivity for the GLS Formulation

The Galerkin Least-Squares (GLS) method was presented in Chapter 4, and numerical
examples using GLS on a coarse uniform mesh were presented in Chapter 6. Recall
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Figure 9.3: Exact error vs. number of elements in mesh. The solid lines are curve fits
of the data.

that GLS is essentially the Galerkin formulation with a residual-based stabilization
term added. With proper design of the parameter 7 (see Section 5.2), GLS provides
enhanced accuracy with fewer mesh points. In addition to how the GLS results
compare to those using Galerkin, of interest is how GLS supplements adaptivity in
enhancing computational efficiency. '

An important assumption in the derivation of the a posteriori error estimate. (9.1)
is that the solution ¢" is obtained by the Galerkin method. The derivation can be
repeated for the GLS method, which results in the following a posteriori error bound:

lell < Cx [IR*r* | @y + 1B2RE i) + Co IR, ) (9.8)

where C; is the same constant appearing in (9.1) and C; is a new constant. Thus
- (9.8) is equal to the Galerkin bound (9 1) plus an additional contribution due to the

error on element interiors. Recall r* is the residual on element interiors, given by
(9.2); R" is the residual on element boundaries, given by (9. 3); h is a measure of
element length; and L,({2) denotes integration over element interiors. The derivation
of (9.8) includes an assumption on the specific form of the GLS parameter 7; details
of the derivation appear in [140].

For the GLS adaptive strategy, we simply use the Galerkin adaptive strategy given
by (9.7). This can be justified by rearranging (9.8) to get

llell < (Cv + Co) [1R*r*I, @) + Cr 1R R* ||y (9.9)

In the previous section we divided (9.1) through by C; to get an expression for the

~ Galerkin scaled error € (see (9.5)). Although such a scaling cannot be exactly carried
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Figure 9.4: Exact error vs. number of elements in mesh.

out here, we can approzimate € by effectively ignoring the contribution from C, in
(9.9), resulting in ‘ ,
— def .

e = R r"| @) + IR R 1,4 (9.10)

which is the same expression as (9.5). This result then leads to the adaptive strategy
(9.7). '
Remark: This does not imply that the estimated error distribution is the same for
GLS and Galerkin. Note that the error distribution is a function of the residual,
which in general may be different for the GLS solution. This is discussed in more
detail later in this section.

We now present convergence studies to show the effect of GLS and adaptivity,
together and separately. As in the previous section, the problem is that of non-uniform
radiation from a rigid infinite circular cylinder, with a nondimensional wave number 7
ka = 2x. The GLS solution employs 7 based on the analysis in Section 5.2. Shown in
Fig. 9.4 is the exact error as a function of ne, for GLS with both uniform and adaptive
refinement, as well as Galerkin with both uniform and adaptive refinement. The
Galerkin convergence curves are the same ones that were presented in F ig. 9.3, and
are included here for comparison with GLS convergence. We consider first the GLS
convergence with uniform mesh refinement, and hereafter refer to it as GLS /uniform
(analogous notation is used for the other cases). As expected, the GLS /uniform curve
lies below the Galerkin/uniform curve, indicating improved accuracy using GLS.

The convergence of GLS (on uniform meshes) is now compared to that of (Galerkin)
adaptive refinement. Referring again to Fig. 9.4, the GLS /uniform convergence curve
lies above the Galerkin/adaptive curve, indicating (at least for this problem) that
adaptivity results in higher computational efficiencies relative to GLS. Finally, adap-
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tivity is combined with GLS to produce the greatest gains in efficiency: this is shown
by the GLS/adaptive curve in Fig 9.4. It is seen that adaptivity and GLS are com-
plementary in that their effects are additive. It is also evident that the convergence
rates of GLS mirror those of Galerkin.

Remark: Recall that adaptive calculations also require error estimation, implemen-
tation of the adaptive strategy, etc., which are not accounted for here. These costs,
although individually small, may accumulate to have the effect of decreasing the net
efficiency of adaptivity. It should be realized that for very large problems (particu-
larly in three dimensions), where a sufficiently fine uniform mesh may be impossible to
generate (due to limited time and/or computer storage), adaptivity may be necessary
to obtain any reasonable level of accuracy. In this sense adaptivity allows problems
to be solved which would otherwise not be possible.

The preceding conclusions are based on analysis of the ezact error, which is shown
- in Fig. 9.4. We now focus on the estimated error. Fig. 9.5 repeats the convergence
study of Fig. 9.4, this time showing the estimated error as a function of mesh refine-
ment. The estimated error € is given by the right-hand side of (9.5), and represents
the scaled error. We thus examine only relative magnitudes of €. It is immediately
evident from Fig. 9.5 that egps is nearly identical to €galerkin, for both uniform re-
finement (top curve) and adaptive refinement (bottom curve). This is in contrast to
the conclusions of Fig. 9.4, where GLS significantly improves upon the accuracy of
Galerkin. Since € is essentially a function of the residual, it must be concluded here
that the GLS residual is nearly identical to the Galerkin residual, even when the two
solutions are different.

The convergence rates with respect to the estimated error (indicated by the slopes
shown in Fig. 9.5) are about 20% higher than the exact convergence rates (Fig. 9.4).
It is likely that on coarser meshes the error estimator is less accurate by overpredicting
the error to a greater extent (e.g., by lumping large residuals on element edges onto
coarse elements, artificially spreading the area over which these errors influence), -
leading to a larger slope.

.From these results we can draw conclusions regarding the absolute value of the es-
timated GLS error. Computation of the absolute error entails including the heretofore
ignored parameters C.’s appearing in the estimated error expressions. Comparing
the GLS error expression (9.9) to the Galerkin error expression (9.1), it is clear that
the estimated GLS error will be larger than the estimated Galerkin error since

C1+C2>01

The overprediction of the GLS error estimator is actually greater upon noting, as
discussed above, that the exact GLS error is lower than the exact Galerkin error.
A common measure of the absolute accuracy of error estimators is the global
effectivity indez, 6, given by
€lles

“e”exact

Thus Ogrs is larger than gaierxin, since for GLS the numerator is larger and the
denominator is smaller than the corresponding Galerkin values. Computations of C;
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Figure 9.5: (Scaled) estimated error vs. number of elements in mesh.

and Cj, as well as 6§, are given in [140].

Remark: Note that 6 involves global quantities and does not measure the accuracy
of the error distribution, which is the information required for adaptivity. A more
useful measure for adaptivity is the local, or elementwise, effectivity index. See, for
example, [118].

9.3 Cost Studies for Adaptivity

As mentioned in Remark 1 at the end of Section 9.1, using ne as a basis of comparison
for convergence studies is convenient since this information is readily available and
doesn’t depend on how the element sizes are distributed in the mesh. We wish now to
move beyond the use of ng and relate it to the underlying issue, which is the actual
cost of computation. In particular, the connection between n and cost, of both
computation and storage, will be established. This will provide a more meaningful
framework for demonstrating the efficiency of adaptivity. We focus again on the
problem of non-uniform radiation from a rigid infinite circular cylinder, with ka = 2r.

The costs of solving the linear system of equations, Az = b, were outlined in
Chapter 7. The results presented in Sections 9.1 and 9.2 were obtained using an
active column direct solver; therefore, the solution costs will be analyzed only in the
context of a direct solver. For the two-dimensional problems such as those presented
here, which are not very large, a direct solver is relatively inexpensive. For very large
problems, especially those in three dimensions, a direct solver would necessarily give
way to a more efficient iterative solver. As shown in Chapter 7, the operation count
of a direct solver grows much more rapidly with problem size. Nonetheless it is useful




Finite element methods for strucural acoustics ‘ ‘ 150

to study direct solver costs even for large problems, for two reasons: A problem size
can be identified in which a direct solver would become prohibitively expensive. based
on the speed and memory of available computers; and qualitative assessments can be
- made of the cost efficiency of adaptivity for any level of solution accuracy.
In the following we carry out these assessments based on theoretical operation
counts and storage requirements given in Chapter 7 for the direct solver. It is as-
sumed that the direct solve step dominates the total cost, and that equation forma-
tion, overhead, etc., are comparatively inexpensive. This assumption will be further
discussed later. The direct solve consists of two main components.— the factorization
of A followed by a backsolve procedure. The factorization of A dominates the direct
solve cost. In terms of the number of equations, ne,, and the mean half-bandwidth of
A, b,, the factorization cost (i.e., the number of operations in the factorization step)
is given by . :
-2—neqb - —63
The unit of measurement here is the flop, or ﬁoatmg point operation. The cost of the
backsolve step, again in flops, is
2neqby, — b2

w

The storage cost, measured in words, is given by
neqbw

~ See Chapter 7 for a more complete discussion of these terms and expressions.

Recall the objective is to obtain the the computation and storage costs in terms
of the number of elements in the mesh, ng. For a mesh of linear triangles with one
degree-of-freedom per node, which is the type of mesh used in Sections 9.1 and 9.2,

Nel

2

Neq R

Thus the computation cost and storage cost can be stated approzimately in terms of
Ne) aS :

factorization backsolve
Computation cost (flops): 1ne1b2 - %—bf’u + nab, — b2 (9.12)
Storage cost (words): ¢ 2nelbw , (9.13)

For large problem sizes the factorization component dominates the computation cost.
It is obvious that the bandwidth plays an important role and should be minimized. In
the limit b, = neq, which indicates a full matrix, the computation cost is n2 o/ 6+n2
n2 /48 + n? /4 and the storage cost is nl ~nd/4.
The bandwidths for exterior acoustlcs problems using the fully coupled DtN
boundary condition are large enough such that the second term in (9.12) must be
retained. For the computations in this work the bandwidth is optimized using the
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Figure 9.6: Mean half-bandwidth of the coefficient matrix vs. number of elements in
the mesh. '

reverse Cuthill-McKee algorithm. The optimized half-bandwidth is shown as-a func-
tion of nq in Fig. 9.6. Notice that smaller bandwidths are obtained for the adaptive
meshes, which is partially due to the fact that the adaptive meshes have fewer nodes
on the DtN boundary.

Cost .comparisons are now presented for the problem of non-uniform radiation
from a rigid infinite circular cylinder, with ka = 2r. The cost of computation is
examined in Fig. 9.7, which shows convergence curves for the Galerkin/uniform and
Galerkin/adaptive cases with respect to the computation time. The data points are
measured times on a Sun Sparcstation 10 and include the total time of the solve step
as well as the time required for equation formation. The solid lines are the theoretical
values based on the above analysis of the direct solve cost.? The first thing to note
about the results is that the theory does not match the data until the computation
time, or, equivalently, the problem size, is sufficiently large. The theoretical costs are
asymptotic cost estimates and assume neq > 1 and b, > 1; for the coarser meshes
these assumptions do not hold, indicating that the costs of equation formation and
any overhead within the direct solve step are significant. However, for larger problem
sizes (corresponding roughly to nq > 2800, and b, > 67 (adaptive) or b, > 85
(uniform)) the direct solve is seen to sufficiently dominate the total cost.

The gain in computational efficiency engendered through adaptivity is greater

%It was necessary to convert the unit of theoretical cost from flops to seconds, which can be
accomplished by knowing the actual speed of the computer. Estimates were made by dividing the
theoretical number of operations of the direct solve step by the measured time of this step. A value
of approximately 0.37 Mflops/sec (on a Sun Sparcstation 10) was obtained using the largest meshes
available, and this value was used to obtain the theoretical curves in Fig. 9.7.
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when considering computational cost (compare Fig. 9.7 to Fig. 9.1). Recall from
Fig. 9.1, for example, that an error of one percent requires roughly 4,000 elements
and 13,000 elements, respectively, for the adaptive and uniform refinements (these
are the Galerkin solutions). The corresponding computation times, from Fig. 9.7,
are approximately 20 seconds and 400 seconds. In other words, the uniform mesh
requires just over three times more elements than the adaptive mesh, but the com-
putation takes twenty times longer! This difference can be attributed to the smaller
bandwidths associated with the adaptive meshes (see Fig. 9.6), as well as the func-
‘tional dependence of computation cost on ne and b,. The rate of convergence with
respect to computation cost is half the rate with respect to ne, as indicated by the .
slopes of the curves in Fig. 9.7. This is easily shown algebraically: From Figs. 9.1
and 9.6, respectively (for uniform refinement), |le|]| o< n3* and b, x ng3%. For large
ne, the leading term in (9.12) dominates. Denoting the computation cost as Ceomp,

~ 2
Ccomp ~ O nelbw

= cna(ng’)’

cg "
or
Neg = €3 Cci?np
Thus
lel = cand'  (continued)
= 5 (Coomp)™
= G Cc?:np

where the c’s represent constants. The results show that adaptivity reduces ¢4 by
a factor of three and c¢s by a factor of nearly four. That is, for a fixed number of
elements, the adaptive computation is three times more accurate. Translated to a
fixed computation time, the adaptive computation is nearly four times more accurate
(this difference is due to the dependence of computation time on b,,, which (recall)
- depends on the type of refinement). :

Computation times were also measured for the GLS runs, and are shown in
Fig. 9.8. The Galerkin curves from the previous figure are repeated here for com-
parison. Recall Fig. 9.4 showed a significant computational advantage in terms of
nq using GLS, for both uniform and adaptive refinement. Similar conclusions can be
drawn here. For example, a one percent-error can be obtained in under ten seconds
with GLS/adaptive, whereas roughly 400 seconds are required with Galerkin /uniform.
Thus the combination of GLS and adaptivity produces a speedup of a factor of 40, twice
that of adaptivity alone.

The two-dimensional computations shown herein are relatively fast, even on a
workstation, because they are small (under 10,000 elements) and linear. In three di-
mensions the computation times will increase significantly, making the advantage of
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Figure 9.7: Exact error vs. computation time.

adaptivity much more pronounced, and very likely necessitating adaptivity or at least
an iterative solver. In many cases it is the required computer storage, rather than the
computation time, which motivates the need for adaptivity. This is particularly true
when using a direct solver for linear problems on a workstation, where the compu-
tations can be performed rather quickly but the computer code requires most or all
of the available memory on the machine. The storage estimate given by (9.13) rep-
resents minimum, asymptotic values, and requires efficient programming to actually
realize. No attempt was made to achieve these estimates with our code; therefore, no
data will be shown. The theoretical storage costs are shown (for Galerkin) in Fig. 9.9,
and we assume that these hold for sufficiently large problem sizes. Adaptivity results
in a storage savings of a factor of more than erght. The rate of storage increase with
convergence is 0.60 (for both uniform and adaptive refinement), as indicated in the
figure. This is shown algebraically as follows: Let Cyor denote the storage cost. From

(9.13),
Cstor = CGnelbw
= C7 ni].SB
or
Tel = Cg Cs.fgr
Thus
lell = cong?

= c10(Cyer)™

.60
R Co Cstor

e
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Figure 9.8: Exact error vs. computation time.

where the ¢’s represent constants. The results show that‘adaptivity reduces ¢;o by
a factor of approximately 3.5. That is, for a fixed amount of storage, the adaptive
computation is 3.5 times more accurate.

Remark: These results apply to the non-uniform radiation problem with ka = 2x.
For other problems it is expected that the trends would be similar, although specific
cost savings from adaptivity depend on the presence and strength of local solution
features. ‘
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Chapter 10

Analysis and Method De51gn for
Coupled Problems

A class of finite element methods, the Galerkin Generalized Least Squares methods,
are developed and applied to model the steady-state response of in vacuo and fluid-
loaded Timoshenko beams. These methods are discussed in greater detail in [49, 50, .
52]. The goal of the new methods is to decrease the computational burden required
to achieve a desired accuracy level at a particular frequency thereby enabling larger
scale, higher frequency computations for a given platform. The results presented in
this chapter are mainly drawn from [49, 50, 52].

The C° continuous Galerkin finite element formulation for Reissner-Mindlin plates
and Timoshenko beams exhibit the deleterious effect of shear locking. Standard
remedies, such as selective reduced integration, while rendering these formulations

~accurate for static problems, provide satisfactory results for wave propagation only

for very small element size to wavelength ratios, placing an undue burden on the
computations. Additionally, the standard approaches may engender spurious modes
in plate models (see, e.g., [69] and [120]).

In order to improve the accuracy of the Galerkin method, Galerkin Generalized
Least Squares (GGLS) techniques are applied to extend the usable frequency region
for finite element models of Timoshenko. beams. The general formalism for the ap-
plication of this family of methods to the problem of modeling Timoshenko beams is
presented. A new method is designed and implemented for a specific member of the

- GGLS, namely the Galerkin gradient Least Squares. The optimal design parameters

for this GGLS method are obtained in closed form by considering the complex wave-
number finite element dispersion relations. The parameters are chosen such that the
finite element dispersion relations match the analytic dispersion relations. Also, the
standard selective reduced integration approach and a modified version of selective
reduced integration with mass lumping are shown to be GGLS methods. Other se-
lections of the design parameters also are discussed. The optimal method results in a
discretization requirement that is one-fifth that of selective reduced integration with
a consistent mass matrix.

The design of finite element formulations for the static response of Timoshenko
beams has been undertaken by Loula, et al. considering mixed Petrov-Galerkin finite
elements [108]. Hughes and Franca developed mixed Reissner-Mindlin elerﬁents for
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statics; it is in the Hughes and Franca paper that the seed of GGLS methods for
structures exists as they add symmetric forms of the residuals of the equilibrium
equations to the standard Galerkin equations in order to enhance accuracy [74].

The Galerkin Least Squares (GLS) technique has already been successfully ap-
plied to the finite element approximation to the Helmholtz equation, improving the
accuracy for acoustics problems [56, 57] as well as structural acoustics problems [51].
In this chapter, optimal Galerkin Generalized Least Squares design parameters are
obtained through the matching of analytic and finite element dispersion relations
as in [50, 52]. This approach parallels the optimality criteria used by Harari and
Hughes for the scalar Helmholtz equation [56, 57] and by Franca and do Carmo for
the Galerkin gradient Least Squares method applied to the scalar advection diffusion
equation [34]. , ‘ o

With the improved beam formulation in hand, we move to developing more ac-
curate methods for the fluid-structure interaction problem. New methods are de-
signed by coupling the GGLS beam formulation to a GLS formulation for the acoustic
medium. The superiority of these new methods is established through the complex
wave-number dispersion analysis technique described in [51] as well as through nu-
merical experiments [49]. The design of methods for the coupled problem provides
a significant reduction in the discretization requirements allowing for computations
at higher frequencies. GGLS methods for coupled systems had not been previously
developed, other than in [49). _

In this chapter, methods for the in vacuo response of beams are first presented.
Numerical and analytic results for the method are then presented and compared to
standard approaches. Methods for the coupled problem are presented next followed
by results.

10.1 Galerkin/Generalized Least-squares Meth-
ods for Timoshenko Beams

10.1.1. Timoshenko beam equations

The coupled governing differential .equations of motion for the steady-state response
of the Timoshenko beam can be written in matrix form as:

—rcGAaﬁg — pAw? kGAZ w q ’
fead 5 5 z 9 = N (101)
or,
Lsu=q (10.2)

where the definitions of the elements of the matrix differential operator £, are ob-
tained by inspection from (10.1) with u” = {w 6} and 7 = {gq 0}. The displacement
vector is also subject to boundary conditions. The radian frequency of vibration is
w, the shear correction factor is «, the shear modulus is G, the Young’s modulus is
E and the mass of the beam is p. The cross-sectional aréa of the beam is A and the
moment of inertia is /.
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10.1.2 Vvariational‘ equations and Galerkin finite element
formulation

Let the variational function spaces S, and V, both consist of continuous functions,
o : Q — R, where =0, L[, with square integrable first derivatives. The solution
space, Sa, is the set of all such functions satisfying the essential boundary conditions.
The weighting function space, V,, is made up of functions whose value is zero where
essential boundary conditions are specified. Define the weighting function vector as
a={w 0} €V =V, xV; The weak form of the problem 1s: given f and any
boundary conditions, find u € § = §,, X S such that for allm € V

a*(T,u) = L(7) | (10.3)
where
st ) o [C19% _5 0w 9 .00 ., -
o*(T,u) := /0 (Gg ~OGA(G, = 0)+ 5, Bl5. ~ p(@Aw +T10)ldz , (10.4)
and
ow L —00.|L
) = (T BhGA(— —0)]| —[EIf=]| 10.5
L(1) = (U, q) + [@rGA(5 N, - 52, (10.5)
with L L
- i — — T
(T, q) .—/O U - qdz A u qdz . (10.6)

Let the spaces " and V* be the restriction of S and V to the space of piece-
wise polynomials of selected order. The Galerkin method is: given q and boundary
conditions, find u* € §* such that for all @ € Y* » '

a*(u", ut) = L(ah) . (10.7)
A matrix problem of the following form results

[K-w™]d=5 , (10.8)

where K, M and and f are the assembled stiffness matrix, mass matrix and force

- vector respectively. The vector of nodal displacements and rotations is given by d.

The element stiffness matrices are k® and the element mass matrices are m® (see e.g.,

[69]).

10.1.3 Galerkin/generalized least-squares finite element for-
mulations for the Timoshenko beams

The Galerkin Generalized Least Squares (GGLS) formulation is an extension of the
Galerkin Least Squares (GLS) technique along the lines of the Galerkin gradient Least
Squares (GVLS) method (34, 56, 57]. In the GLS technique, a term proportional to a
weighted integral of the residual of the original differential equations is added to the
standard Galerkin equations. The GGLS formulation differs from the GLS in that
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the added term consists of a weighted integral of a differential operator acting on the
residual. The GGLS method is to find u* € S* such that for all @* € V*

Acers(',u*) = Logrs(@) (10.9)
where
nLs
AGGLs(ﬁh,uh) = as( + Z H; [,su H L.u )ﬁ y '(10.10)
i=1
and _ .
N=1 7., ~ ‘
(H,£. 0" HyLowh)g = 3 / (H;L,w) - (H;L,ut)de . . (10.11)
e=1 YVTe : . ‘

The matrix operator H; is defined as

H. = 15277 ~ ; 10.12
! [ 0 T2j 5omm5 86; JJ

where 71; and 7,; are design parameters to be determined, as are n; and m;. The

number of least squares operators modifying the the variational equations is nys. The

force contribution is
nLs

LGGLs(-ﬁ'h) = + Z H L u qu)ﬁ . (1013)
5=1

In general, the method will consist of fixing n;, m; and nys and choosing the val-
ues of the 7 parameters judiciously. The 7’s are element quantities, constant over the
element but varying with element. The formalism of (10.9)~(10.13) represents a very
flexible methodology and allows for very general modifications to the Galerkin equa-
tions. The use of nys > 1 has been studied recently by Harari [62] for the advection
diffusion equation and this approach has great promise, especially for applications to
Reissner-Mindlin plate elements. In the sequel, we will consider nyg = 1 and drop

the summation and subscript notation.
We consider the Galerkin gradient Least Squares (GVLS) method where n = m =

HGVLS = [ Vi 0 } . ‘ | (10.14)

o
ng:;

L

The additional forcé contribution arising from the least-squares addition comes from
the 7 proportional terms only. Hence, if 7; is zero, there is no alteration to the
consistent Galerkin force vector. '

The GGLS method results in a matrix problem of the form:

K-w™M+Kld=2d=7F , (10.15)

where K is the GGLS contribution to the stiffness matrix assembled from the element
GGLS contributions, k*. The assembled force vector, f, includes any contributions
from the GGLS formulation through (10.13). The dynamic stiffness matrix, Z, is the
assembly of the element dynamic stiffness matrices:

z° =k —wim® + k° . (10.16)

Let z;, = [2°]¢, j¢th element of z°.
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10.2 New Tlmoshenko Beam Elements Using Lin-
ear Interpolants

In this study, the GVLS version of the GGLS is applied to a linear finite element
interpolation of the Timoshenko beam equations. While other formulations, such
as the GLS method, were examined, the GVLS was found to yield most directly
successful results for linear interpolants. The GVLS gives control over the dominant
error terms. In this section, the specific form of the GVLS is presented along with
optimal design parameters that yield zero dispersion error and suboptimal design’
parameters that yield selective reduced integration (SRI)-ard SRI with mass lumping.
To our knowledge, this presentation is the first to link a mass lumping method with
a consistent finite element method.

10.2.1 GVLS with linear interpdlants

For linear interpolants, the resulting GVLS formulation is

, Owh 9" il
52 —)5 +(m2[pIw? — /cGA] 50 ,[pIw? — kGA] 81:)

. 0q oot
= L@ )—(Tla,/’flﬁg{)ﬁ

o
a* (T, u) + (rpAw? 88-—,pAw

The GGLS contribution to the element dynamic stiffness matrix is

™ 0 | 0 .
Fe T 0 -—r ’ '
k¢ = r 0 , (10.17)
symmetric T9
where,
r = 1(pAw®)?/h : ' - (10.18)
ry = m(plw? — kGA?/h . (10.19)
Remark:_'
1. If 7 is set to zero, and . :
' ro = —hkGA/12 (10.20)

where h is the element length, the effect of selective reduced integration is recov-
ered. Hence selective integration is a special case of GVLS over all frequencies,
even for w = 0, i.e., statics.
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10.2.2 D'ispersion analysis and eigenvector accuracy

Dispersion analysis and the accuracy of the associated eigenvectors are used in this
study both as design criteria for determination of the optimal 7 parameters and as a
means of assessing the accuracy of different methods. A brief outline of the manner in
which the finite element dispersion relations are found is given next, for more details
- see [51, 120]. The homogeneous finite element matrix equations for an infinite uniform
mesh are formed; these matrix equations yield the following difference stencils for the
wy, equation:

z13Wn-1 + 2230n-1 + (211 + 222)wn + (212 + 234)0n + 213Wn 41 + 2140n41 =0 (10.21)
and for the 0. equation: '
214Wn—1 + 2240n_1 + (212 + 234)Wr, + (222 + 244)0n + 225Wr1 + 224041 =0 . (10.22)

An exponential solution is assumed for the nodal unknowns:

d'n - uoeikhn = { Wo }eikhn , (1023)
bo
where ¢ = \/—1, h is the nodal spacing and k is the wave number. Substitution of
the assumed exponential form into the stencil equations results in the conditions for
allowed waves in the finite element mesh:
2213) + 211 + 233 — 212237 wo
) = =0 10.24

2tz23n . 2294 + 230 + 244 0o F o ( )

where A = cos(kk), n = sin(kh). The matrix, F, in (10.24) is called the Fourier

matrix [51, 120]. Setting the determinant of the Fourier matrix to zero yields the
finite element dispersion relation for the Timoshenko beam:

XM+ awmrtaz=0 | (10.25)
where
‘ oy = 4213204 + 233) , - (10.26)
@ = 2(224(211 + 233) + 213(222 + 244)) (10.27)
and : . | '
4 as = (211 + 233)(222 + 244) — (212 + 2?34)2 4233 . (10.28)

The superscript * is used to denote wave numbers that satisfy the finite element
dispersion relation (i.e., k" satisfies (10.25) ). These wave numbers are called the
numeric wave numbers.

Once the allowed wave numbers for the finite element mesh are obtained via
- dispersion analysis, one may examine the accuracy of the eigenvectors associated .
with each wave number. The eigenvectors of the Fourier matrix are obtained from
(10.24) . The ratio of the rotation to the displacement is

_%L_ _ 22040 + 2oy + 24y

h

Al = =
wg 2t z93mh

(10.29)

Eigenvector accuracy for Timoshenko beams has also been studied by Jasti [85].
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10.2.3 Design parameters for zero dispersion error

Next, the method by which the optimal design parameters 7, and 7, are selected
is described. The 7 parameters that yield a finite element dispersion relation that
matches the analytic dispersion relation are sought. There are two values of A that
satisfy (10.25) which correspond to two pairs of numeric wave numbers £k* and +k%.
There are also two pairs of wave numbers that satisfy the the analytic dispersion
relation [47]. Substituting the exact wave numbers into the finite element dispersion

relation results in , ‘ A . . .
alkf + 02/\1 + Q3 = 0 y . (1030)

oM tadtaz=0 , (10.31)

where A; = cos(kih) and A; = cos(kyh) with k; and k; satisfying the analytic disper-
sion relation. The coefficients o; contain the design parameters; (10.30) and (10.31)
are two nonlinear equations in 7; and 7, which must be satisfied for zero dispersion
error. These nonlinear equations may be solved in closed form for the 7’s which give
zero dispersion error; the expressions for the optimal values are given in [50, 52].
These optimal values for 7 are obtained in terms of the Galerkin element stiffness
matrices and the wave numbers satisfying the analytic dispersion relation.
Performing a limiting analysis of the optimal 7’s by expanding in powers of w

yields:
' lirr(1)7"1 = lirr(lJ F1(pAw?)?/h = ~pAw?h/4 _ (10.32)
. | —EI I T7AR?

For statics 7 plays no role in the GGLS formulation, as these terms enter only through
the mass contribution. The value of 7, limits to that of SRI, (10.20) ; hence SRI is
the zero frequency limit of the zero dispersion error GGLS,,; formulation.

10.2.4 Design parameters for enhanced Fourier matrix ac-
curacy |

Another possible criteria of accuracy is to examine the discrete Fourier matrix com-
pared to the exact Fourier matrix. If one assumes the exact traveling wave solution
at the nodes of a uniform finite element mesh and that kk < 1, one may design a
method that minimizes certain elements of the difference between the exact and dis-
crete Fourier matrices while still eliminating shear locking. This choice of parameters
is

r1 = —pAw?h/6 | (10.34)

ry = —pIhw?[6 — hkGA/12 (10.35)

which turns out to be the element mass and stiffness matrix for SRI with a lumped
mass approximation (lumped using Lobatto quadrature [69]). Denote this element
as GGLS,,,. This GGLS method engenders an alteration to the force vector as T
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is non-zero. This differs from the standard lumped mass approximation in which no
alteration to the force vector occurs. It will be shown that this element is superior to
the SRI-consistent mass element but not as accurate as the optimal choice of the 7’s.

10.3 Results for Timoshenko beams

Results are presented for a steel beam, F = 210 x 10'° dynes/cm?, v = 0.29 and
p = 1.8 g/cm?®. The beam length L = 100.0 cm, is simply supported at both ends
with a rectangular cross-section, unit width and thickness ¢t = 0.15 ¢cm. The shear
correction factor, & is taken to be 5/6. The implementation of the optimal T parame-
ters of Section 10.2.3 is compared to results using a selective reduced integrated (SRI)
element and the GGLS method corresponding to selective reduced integration with
mass lumping (GGLSen) of Section 10.2.4.

It is interesting to note that the 7 parameters used in this study are real, nega-
tive quantities. Hence, the GGLS contribution serves to reduce the stiffness of the
standard Galerkin formulation. This results in /7 that is a pure imaginary number.
In most GGLS and GLS formulations the design parameters add stability to the for-
mulation; here the GGLS actually reduces the stability of the formulation in order to
enhance the accuracy.

10.3.1 Dispersion relations for the Timoshenko beam-

Next, the dispersion relations and the accuracy of the eigenvector ratios for the model
problem are studied. These results are presented for values of R(kh) < 7 which
corresponds to two elements per wavelength, where R denotes the real part of a
complex quantity. This is the cut-off frequency of the dispersion relations above
which the real wave numbers become complex. A more physical limit would be
four elements per wavelength (R(kh) < 7/2), as two linear shape functions do not
possess sufficient minima and maxima to represent the variation of the response over a
wavelength while four such shape functions do [56, 57). In Fig. 10.1, the finite element
dispersion relations, obtained from (10.25) , for the GGLS,,; formulation and the SRI
element are compared to the analytic dispersion relation. As the frequency range
plotted is below the cut-in of the second anti-symmetrical mode, one of the wave
numbers satisfying the dispersion relation is real, corresponding to a propagating
wave and the other is purely imaginary, corresponding to a decaying wave. The
GGLS,p: formulation matches the analytic dispersion relation, as required by the
method. At low frequencies, the SRI element performs fairly well with the qualitative
behavior of the dispersion relations being replicated. The error in the real wave
number (denoted kyop) is less than 3% for discretizations finer than ten elements per
wavelength. Above the ten elements per wavelength level, the imaginary root locus
diverges rapidly away from the exact dispersion relation. In fact, this wave-number
locus becomes complex (an oscillatory-decaying wave) for wh > 100000.0 ¢m/s and
thus completely misrepresents the analytic behavior of the dispersion relation. The
real wave-number locus remains real at these higher frequencies, maintaining the
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character of the analytic solution. However, the error in this branch increases with
frequency.

The finite element dispersion error for the GGLS,,,, element are significantly lower
than for the SRI formulation, with an error in the real component of the wave number
less than one percent for discretizations finer than ten elements per wavelength [49]
The errors in the eigenvectors are discussed in [49, 52, 85]. ‘

abs(kh)

SRI - recal @-
SRI - imaginary &

0.5 analytic and GGLS -rcal == -
. analytic and GGLS - imaginary -o-
0 " 1 A A " 1 "
0 5 10 15 20
wh (10" cm/s)

Figure 10.1: Analytic and SRI finite element dispersion relatlons for a Timoshenko
beam. Steel beam, A/t =20/3 . '

10.3.2 Displacement results for the Timoshenko beam

A finite element discretization of the model problem with interelement spacing of
h = 1.0 cm is considered. Only the displacement is presented here as the rotation
results follow the same trends. In order to demonstrate the performance of the GGLS
formulation, the frequency is set to 7550 Hz which corresponds to wh = 47500.0 cm/s.
At this frequency, the analytic wave number corresponds to 4.30 elements per wave-
length (kproph = 1.46), a very coarse discretization. The results comparing the SRI
element to the exact solution are shown in Fig. 10.2. These results clearly demonstrate
the impact of the phase error as seen in the finite element dispersion results. For the
finite element solution, the number of half wavelengths over the beam is twenty-one
while for the analytic solution there are twenty-three. While refining the finite ele-
ment mesh, the approximate solution will experience a resonance before converging
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to the analytic solution; i.e., the error will get worse before converging monotoni-
cally. Also, there is a large error at the drive point where the SRI element fails to
the reproduce solution around this discontinuity. Results at the same frequency and
discretization using the GGLS,y, element (not shown) also are poor due to the high
phase error for this discretization.

displacement (107!%m)

I
- o
0 || 0ol
iR ﬂ.i\"]#i\
T TR A W AR AT
U0 B A
SO O S Rl
-4 SRI
5 | , analytic o
0 10 20 30

length (cm)

Figure 10.2: Comparison of exact and SRI finite element displacement for a steel
beam, h/t = 20/3, frequency of 7550 H=z.

In Fig. 10.3 the result for the GGLS,,: element is shown. The GGLS,,: method
provides a dramatic improvement in accuracy over the SRI and GGLS,,, methods.
The phase is exactly replicated over the entire length of the beam. The response.
around the drive point is also well reproduced; the essential behavior of the situa-
tion is well represented. There is an error in the amplitude of the standing wave
pattern over the length of the beam. This amplitude error is exacerbated as wh is
increased, although the phase continues to be exactly represented. The amplitude
error is partially due to errors in the eigenvectors. '

10.3.3 L, error and discretization rules

The displacement results presented in the previous section give a good qualitative feel
for the accuracy of these methods. Quantitative error measures using the L, norm
are given next. The error in the displacement is defined as

ew =wh —w | (10.36)
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Figure 10.3: Comparison of exact and GGLS,: finite element displacement for a steel
beam, h/t = 20/3, frequency of 7550 Hz. :

where w is the exact solution and w" is the finite element approximation. The L,
norm is ‘

holl = ([ w?da)? . s

The convergence rates of the three methods are studied under uniform refinement.
The optimal convergence rate for the linear interpolation is Ch? [69], i.e. ||e|| ~ Ch?Z,
where C is independent of A, but will be seen to depend on frequency. The L,

convergence of the rotation is not presented here as those results follow a similar .

trend [52].

The convergence rates for the dlsplacement at f = 7550.0 Hz is shown in Fig. 10.4.
In this plot the normalized L, error is plotted versus the number of elements used in
the discretization of half the beam (n.;). In order to obtain a one percent normalized
error, the GGLS,,; method requires one-third the number of elements needed by the
GGLS,,, method and one-fifth the number of elements needed by the SRI element.
The convergence rates for all three methods asymptote to the optimal rate. However,
the GGLS,,: method achieves that optimal rate with fewer elements. Examination
of the error for the SRI element reveals that an increase in error the occurs before
monotonic convergence with mesh refinement. This effect is due to a numerical (false)
resonance that is caused by the poor phase accuracy of the SRI element.

In [49, 52] it is noted that with increasing frequency the dynamic correction af-
forded by the GGLS,,: method increases as well. Therefore, the difference between
the L error curves also increases indicating that the constant in the convergence rate
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Figure 10.4: Normalized L, error (in percent) for the beam displacement of the model
problem at 7550.0H z.

is frequency dependent.

Because the propagating solution dominates the beam response, the important
scale for this problem is the normalized wave number, k,..,h, where kprop is the
real, propagating wave number. It is customary to consider the equivalent scale of
elements per wavelength in quantifying discretization requirements. Note, if more
than one scale is important, such as when a boundary layer is present, then multiple
scales are required to quantify discretization requirements. '

Table 10.1 summarizes numerical experience for uniform refinement of finite el-
ement approximations using the various finite element approaches discussed in this
paper. These values represent the minimum number of elements required for adequate
representation of the solution (roughly a 10-20 percent relative error).

Table 10.1: Discretization summary.

method | minimum discretization

GGLS,p: | 4.5-5 elements /wavelength

GGLS,,, | 12-15 elements/wavelength
SRI 24 elements/wavelength
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10.4 Coupled Fluid-plate Differential Equations

In this section, new finite element methods for Reissner-Mindlin plates coupled to an
acoustic fluid are developed using the GGLS framework. The new method combines
the optimal GGLS parameters for the :n vacuo beam, presented in the previous
section, with a GLS method in the fluid. The superior accuracy characteristics of the
new method are demonstrated using the complex wave-number dispersion analysis
technique described in [51] as well as through numerical experiments.

First, the governing differential equations for the coupled system are briefly re-
counted. Let Q € R? represent the region which the acoustic fluid occupies and the
curve I' denote the fluid-structure interface and the parameterization of the mid-
surface of the plate. The domain interior to T, i.e. R?\ §, is taken to be evacuated.
Using the operator definitions for the structural variables from (10.1) , (i.e., the
Timoshenko beam matrix differential operator), the coupled equations for the fluid-
pressure, p : } — C and the displacement u : T' = C? including the effects of fluid
loading are

L,u =q-—np onl | (10.38)
Lysp =0 in) (10.39)

where 1i° is the outward normal from the plate accounting for the rotational degree
of freedom, L; is the Helmholtz operator. The homogeneous Helmholtz equation
is considered with the extension to the inhomogeneous case being straightforward.
The fluid pressure is coupled to the structural displacement through the continuity
of normal displacement boundary condition

n-Vp=pwn’-u onl , ' _ (10.40)

where f is the outward normal from the plate. The fluid pressure must also satisfy
radiation boundary conditions which we express in terms of the DtN condition on the
truncation boundary, 0Br, as

—Mp =p,, on 0Br (10.41)

where M is the DtN operator appropriate to dBg [41, 98] and p,y, is the normal deriva-
tive of the pressure. As mentioned in Chapter 4, this is the exact boundary condition
producing a problem that is equivalent to the original infinite domain problem. This
boundary condition involves a infinite sum of harmonics. When implemented in prac-
tice, the sum is truncated and an approximate boundary condition results. The effect
of the number of terms taken in the series on the accuracy and uniqueness of the
formulation is discussed by Givoli [41, 98] and Harari [56, 58].




Finite element methods for strucural acoustics o _ : 169

'10.5 Variational Equation.s for the Coupl.ed Sys-
tem

Next, the variational equations of the coupled system are given. The variational
equations may be written as

a’(T,u) + (T,np)r = L°(1) , (10.42)
! (B, p) + (B, po®W)r + (B, Mp)ss, = 0 , (10.43)

where 7 and u? = {w 5} are the weighting functions. Any natural boundary con-
ditions for p on I' are enforced via essential boundary conditions on the normal dis-
placement. The structural operator a®(-,-) is defined in (10.4)-(10.6). The operator
al(-,) is o

oI (5,p) = [ [VF- Vp—Kppld2 . (104

The weak form of the problem is: Given q, appropriate boundary conditions for u
and p, find (u, p) € Sux S, such that for all (W, ) € Vy x V, the variational equations,
(10.42) and (10.43), are satisfied. ‘

10.6 Galerkin/Generalized Least-squares Finite El-
| ement Formulations for Coupled Problems

In this section, the GGLS method for the fluid-loaded plate is presented. We will study
methods with one least-squares operator each for the fluid and structural equations. .
Further, the GGLS,,; method for the structural equations described earlier in this
chapter is coupled to the GLS method of Harari and Hughes [56, 57] for the Helmholtz
equation. The finite element interpolations of the displacement and pressure are u”
and p", respectively. Linear interpolation is used for the plate variables and bilinear
interpolation is used for the acoustic pressure. ,
With these assumptions, the GGLS equations may be written as

Azers(@,u") + (@, a°p")r + (HL, o' Ha*ph), = L°(w) ,  (10.45)

AéLS(ﬁh,ph)+('p-h'ﬁvPOL‘)zuh)F'!'(—p_h7Mph)BBn =0 3 (1046)

where
Abrs = @M + (LB L") (10.47)
Asers(@,u") = o(Wh u) + (HLT HLub): | (10.48)

where H is the GVLS matrix differential operator including the design parameters 7;
and 7, see [50, 52]; 7y is the GLS design parameter for the acoustic pressure. The 7y
terms inherent to the GGLS,,; method result in a new fluid-pressure coupling term,
(Hﬁsﬁh,Hﬁsph)f. This term adds an unsymmetric component to the formulation.
This non-symmetry has implications when evaluating computational efficiency and
storage requirements.
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In choosing the design parameters for the coupled problem the 7's determined
optimal for the uncoupled model problems are used. Therefore for the beam. the
GGLS,,: approach is used. The structural methodology is coupled consistently to the
GLS formulation of Harari and Hughes [56, 57] for the Helmholtz equation, where
they derive the 74 which yields zero dispersion error for a one-dimensional acoustic
medium. The value of 7y is given in [57]. The accuracy of the new method arising
from the consistent coupling of the GGLS plate and GLS fluid methods is studied.

10.7 Finite Element Dispersion Relatlons for the

Fluid-loaded Plate

To study the accuracy of the new formulation, the model problem of the infinite fluid-
loaded plate is used. This problem was studied in detail in [51] and discussed in [85],
and we will here outline the manner in which these dispersion relations are derived.
We use the finite element dispersion relations to determine the accuracy of the new
design.

To obtain the finite element dispersion relations for the fluid-loaded Reissner-
Mindlin plate, a uniform mesh in the fluid and structure is used, see Fig. 10.5. Just
as for uncoupled systems, the assembly of the finite element matrix equations results
in repetitive stencils for the fluid and structural variables.

Exponential solutions in the plate and fluid are assumed as follows,

wy, = woernde = wouy , ‘ (10.49)
On = Goe*"4" = fou7 _ (10.50)
Prm = poetATeRmAY = poyrym (10.51)

where k; and k, are the wave numbers of the coupled system, n and m are the
node indices (see Fig. 10.5); Az and Ay are the interelement spacing in the z and y
directions. Substitution of the assumed forms into the stencils yields a non-standard
condition for the existence of allowed waves in the coupled system. By seeking non-
zero solutions for the pressure amplitude, the non-standard condition is reduced to a
standard determinantal condition from which the non-trivial solutions are calculated.
For the details of these calculations see [51].

The allowed waves in the finite element mesh are to be compared to the analytic
dispersion relations for the fluid-loaded Reissner-Mindlin plate which are quintic in
kz. For a description of the analytic dispersion relations see [25, 131, 132] for a
detailed comparison of the analytic and finite element dispersion relations for the

coupled system see [51].

We recount some of the important points regarding the k, dependence of the wave
numbers satisfying the dispersion relations. There are five branches of the dispersion
relations. One is a purely real branch which is denoted as the subsonic loci (wave
speed less than the acoustic wave speed). This wave number is most important as
it corresponds to a flexural mode which dominates the surface displacement. The
next most important branches are the two evanescent wave-number loci. The wave
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numbers on these loci are complex conjugates of each other over the entire frequency
range and consist a small real part and dominant decaying or imaginary part. The
final two wave-number loci, whose relation to one another changes with frequency
(although they exist as complex conjugates over much of the frequency range) are
called the leaky wave-number loci. The k, dependence of the leaky wave numbers,
whose contribution is considered least important over the frequencies studied, is that
of a predominantly real part with a relatively smaller imaginary part. The discussion
of the importance of the various wave-number loci involves a discussion of branch
cuts in the complex plane (see [25, 49, 51, 131]). '

The qualitative similarity of the finite element dispersion relations to the analytic
dispersion relations for the Galerkin and GGLS,,:-GLS formulation is excellent. We
do not present these curves but rather move directly to quantitative error plots to
demonstrate clearly the superior accuracy of the new methods with regard to disper-
sion error.

The phase and amplitude error of the k, wave-number loci are presented. These
plots are for steel plates in water; the plate material properties were described in
Section 10.3, and for water we have taken po = 1.0gr/cm® and ¢o = 148100 cm/s.
The phase and amplitude error plots for the SRI plate element coupled to the Galerkin
fluid approximation are shown in Fig. 10.6 and Fig. 10.7, respectively. For the new
GGLS method, the phase error is shown in Fig. 10.8 and the amplitude error in
Fig. 10.9. The GGLS error plots demonstrate the improvement obtained using the
new approach. The error in the important subsonic wave-number loci remains below
two percent over the entire frequency range. The evanescent wave-number branch
is perfectly replicated up to the cut-off frequency for this branch in the k, direction
(which occurs at a value of 7 around wh/cy = 2.7 [51]). If we consider vertical branch
cuts from +ko in the complex plane for the square roots in the analytic dispersion
relation (see, e.g. [25]), the leaky wave-number root only enters the first Riemann
sheet for wh/cy > 1.0. The wave numbers may only exist as free waves when on
the first Riemann sheet. A particular wave number is only considered important
when it may exist as a free wave. For these frequencies the accuracy of this branch,
both phase and amplitude error of the leaky wave loci remains below three percent.
The standard Galerkin approach has an error which increases with frequency and is
greater than five percent over this frequency range.

The GGLS approach has a lower error than the standard Galerkin approach for
every branch of the dispersion relation at frequencies where free waves are possible.
This superior accuracy was attained by a consistent combination of optimal methods
for the uncoupled systems. The complex wave-number dispersion analysis methodol-
ogy developed in [51] enables an error estimate for the new method to be obtained in
a general setting.

10.8 Fluid-loaded Plate Numerical Experiment

In this section, a two dimensional fluid-loaded plate problem is solved numerically.
The results of the new formulation are compared to that of the standard Galerkin
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approach. In Fig. 10.10, a schematic of four interconnected plates immersed in an
infinite fluid is shown.  The long side of the rectangular configuration is 6.0 em
while the short side is 1.0 em. The plates are steel with a thickness of 0.15 em.
The plate material parameters are given in Section 10.3. The DtN boundary is
at B = 6.5 cm. The forcing function for this problem is a unit point load (one

~dyne) in the vertical direction at z = 3.0 em and y = 0.0 cm. The plate admits

longitudinal motion as well as transverse displacement and rotation. The plates are
rigidly connected with continuity of displacement and rotation conditions at the joints.
Hence, the longitudinal force will excite both extensional and transverse waves in the
plate system. ‘Longitudinal motion has been added into the finite element model,
although we have not discussed the implementation (for details see, e.g., [69]). Due
to the symmetry of the loading, the solutions exhibit amplitude symmetry about the
horizontal axis.

Results for the frequency ko = 2.0 em™! is presented. Different meshes were used
to for comparing convergence and accuracy. The number of elements used in each
mesh is given in Table 10.2. The meshes are used at both frequencies, and a typical
mesh is shown in Fig. 10.11. These meshes are generated in the following manner.
The circumferential spacing is uniform on the plate and on the DtN boundary with
a radial line connecting the inner plate node to the DtN node. The radial spacing of
the nodes along each line is uniform, except for the first four nodes in the fluid, whose
spacing is half that of the other nodes. The finest mesh differs from the other three in
that the DtN radius is truncated and the domain boundary is placed at B = 4.0 em.

Table 10.2: Meshes for plate problem.

Mesh name Circumferential elements | Total elements
coarse o6 1904
intermediate 140 4760
fine : 224 9408
finest (truncated) 420 14280

Two methods are used to discretize the structure and fluid variables. One method
is the standard Galerkin approach which consists of SRI elements for the transverse
vibration of the plate, Galerkin elements for the longitudinal plate vibrations and
acoustic fluid elements. The other method is the GGLS approach which consists of
the GGLS,,; method for the transverse plate vibrations and the GLS method for the
longitudinal plate vibrations and the acoustic fluid elements. The use of GLS for
one-dimensional and two-dimensional wave propagation is described in [56, 57].

- 10.8.1 Results for ky = 2.0 cm™!

The pressure and displacement amplitudes of the fluid-loaded plate at kg = 2.0 em=!
are studied. For the solutions obtained in this section, convergence is considered
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attained when less than a five percent change in nodal amplitude occurs between
meshes. :

The pressure amplitude contours for the intermediate mesh GGLS approximation
is shown in Fig. 10.12. A converged solution is attained by the intermediate mesh
GGLS solution. In addition to convergence of the amplitude of the solution, the
spatial variation of the pressure and displacement on the fluid-plate interface is ex-
amined. For the converged solution, the wavelength with which the amplitude varies
is the same as the subsonic wavelength. The subsonic flexural wave dominates the re-
sponse and' the correspondence between the analytic and numeric results gives further
confidence as to the accuracy of the approximation. The fine mesh Galerkin solution
is shown in Fig. 10.13. The intermediate mesh Galerkin solution (not shown) bears a
qualitative resemblance to the converged solution. However, the pressure amplitudes
are four time greater than the converged solution. This large error is due to the poor
phase accuracy of the SRI plate element giving rise to “numeric” or false resonance
behavior as seen in the in vacuo plate finite element models. The fine mesh solution
has an amplitude error of about fifty percent, similar to the error in the coarse mesh
GGLS solution. Due to memory restrictions of the available computational platform, -
a converged Galerkin solution was not obtainable on the original domain using the
uniform mesh. In order to approach the converged solution, a retracted DtN bound-
ary was used to shrink the computational domain. This reduction in the size of the
domain allowed for the additional refinement necessary to capture the solution.

These qualitative statements about the error can be made quantitative by ex-
amining the normal plate displacement and the DtN pressure amplitude for the two
methods on the various meshes. The results for the normal plate displacement ob-
tained through the GGLS method are shown in Fig. 10.14. The rapid convergence of
the GGLS approach is seen as the intermediate mesh provides sufficient resolution to
obtain the converged solution.

The results for the normal plate displacement obtained through the Galerkin ap-
proach are shown in Fig. 10.15. An increase in amplitude error with mesh refinement
from the coarse to the intermediate mesh occurs. This is due to the poor phase accu-
racy of the Galerkin approach and this effect can also been seen in the full in vacuo
beam results. From the intermediate mesh to the finest mesh, the finite element so-
~ lution converges monotonically to the actual solution. Under the Galerkin approach,
one must use the fine mesh (9408 elements) to exceed the accuracy of the coarse
mesh GGLS solution (1904 elements). The finest mesh solution (using the truncated
domain) for the Galerkin scheme achieves the converged result.

The pressure amplitude on the DtN boundary for GGLS solution and for the
Galerkin solution contain similar information as to the magnitude of the amplitude
errors. These results show the propagation of the amplitude errors of the normal
displacement on the surface of the structure out to the farfield [49].

The GGLS approach achieves the converged result on the intermediate mesh while
the truncated finest mesh is required for the Galerkin method to attain a similar
but less accurate solution on the smaller domain. Next, storage and computational
requirements of the application of the two methods on these two meshes are compared.
Let nZ,,, and n . denote the number of equations required for satisfactory accuracy
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“to be achieved by the symmetric Galerkin and the unsymmetric GGLS approaches
respectively. Noting that each plate node has three degrees of freedom. we have for
the finest mesh ng,,, = 15120 and for the intermediate mesh n} . = 5040. ‘Let b5 and
b, denote the mean half bandwidth of the meshes for the symmetric Galerkin and
unsymmetric GGLS solution schemes respectively. Note also that for the unsymmetric
method, the upper and lower bandwidths are the same. For this frequency, b, = 400
(finest mesh) and b, = 136 (intermediate mesh). ‘The storage requirement for the
symmetric method is b,n;,,, and for the unsymmetric formulation 2b,n},,; the ratio
of the storage requirement for the Galerkin approach to that for the GGLS approach
is 4.4. Considering asymptotic estimates of floating point operation counts (flops) for
direct solution of the matrix equations, the number of flops for the symmetric band
solver is approximately ng,,,,(b2 + 3b,) and for the unsymmetric band solver 2n%, b2
[45]. The ratio of the flop estimates for the direct solution of the equations resulting
from the Galerkin approach to that for the GGLS approach is 13.0. Hence, significant
storage and computational gains are achieved by the GGLS approach. A mesh similar
to the finest mesh used on the full domain would correspond to more than 25,000
elements and in that case the indicated advantage of the GGLS approach over the
Galerkin solution scheme would be even greater. Note, any added cost of calculating
the design parameters for the GLS and GGLS methods has been neglected in the
analysis; these would be proportional to the number of total elements if all elements
were of different size. Reduction in the amount of calculations needed for the design
parameters is achieved when elements have the same characteristic size.

By using the GGLS approach for this problem, we were able to obtain the solution

on the original domain. In addition to a reduction in the storage requirements,

the amount of computational effort is also reduced using the GGLS approach. The
benefits gained from the GGLS method increase with frequency, as the correction
from the least-squares addition becomes more important.

Remarks:

~ 1. The unsymmetric component of the GGLS method only enters on the fluid-
structure interface, other than this the method is completely symmetric. Ad-
vantage may be made of this fact to easily reduce the storage requirements
from Qbun};qns to byny,,., + nysiby, where ny,; is the number of nodes on the
fluid-structure interface.

2. In the numerical study undertaken, a very regular mesh was used. The only

‘ refinement of the mesh to the anticipated solution was that smaller elements
were used close to the structure, to capture the subsonic field. Much of the
circumferential refinement of the uniform mesh necessary to resolve the solu-
tion was needed primarily on the fluid-structure interface and such refinement

was not as important on the DtN boundary. As the subsonic waves propagate
through the fluid, a filtering effect occurs, smoothing the solution greatly. A
re-meshing strategy that truly adapts to the character of the solution would
yield great significant benefits, for it is the reduction of the number of elements

on the DtN boundary where the greatest decrease in profile could be achieved.
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A successful refinement scheme would locate a greater density of elements near
surface of the structure and fewer elements at the DtN boundary. Such a re-
finement scheme would yield a reduction in storage and computation for both

the Galerkin and GGLS schemes see Chapter 9.

3. The exterior structural acoustics problem was studied here. The manner in
which the GGLS method was designed, by using model uncoupled problems to
obtain the design parameters, did not prejudice the methodology toward either
the interior or exterior problem. Hence, it is anticipated that this new method
would yield substantial accuracy enhancement for the interior problem as well
as the already demonstrated superiority for the exterior problem. ‘

10.9 Future Work

An area of future research is the application of GGLS techniques to finite element
models for Reissner-Mindlin plates for arbitrary quadrilateral geometry. One ap-
proach might be to combine GLS and GVLS methods to achieve this result. Ap-
plication of GGLS methods to mixed plate elements that have no shear locking or
spurious modes (such as the Hughes and Tezduyar [80] or the Bathe and Dvorkin
[13] approaches) to enhance the accuracy of these elements with regard to dynamics
is currently under study. Also interesting would be the examination of the effect of
nonuniform meshes on the accuracy of GGLS. GGLS methods may be applied to
geometrically axisymmetric and general shell configurations to enhance the accuracy
and this too is of great interest. -

Finally, an important area of future work is the development rigorous proofs for
the convergence of these methods. For statics, it would be valuable to show the
dependence of the convergence of these methods on the element size to thickness
ratio just as Arnold [7] has done for the Galerkin approximation for the Timoshenko
beam. :
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Figure 10.6: Phase error for the real components of k, wave numbers for a fluid-loaded
plate. Finite elements: SRI for the plate and Galerkin for the fluid. Steel plate in
water, h/t = 1.0.
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Figure 10.12: Pressure amplitude contours results for GGLS finite element method,
intermediate mesh kg = 2.0 em™1.
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Figure 10.13: Pressure amplitude contours results for Galerkin finite element method,
fine mesh, ky = 2.0 em ™. '
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Chapter 11

Space-time Finite Element
Methods for Transient Structural

A coustics

The design of new space-time finite element formulations for solution of the transient
- structural acoustics problem in exterior domains are presented. The development
and results presented in this chapter are drawn from [143, 146, 148, 149, 150, 151].
The formulation is based on a time-discontinuous Galerkin Least-Squares variational
equation for both the structure and the acoustic fluid together with their interaction.
The result is an algorithm for time-dependent wave propagation with the desired
combination of good stability and high accuracy. The method is especially useful for
the application of hierarchical hp-adaptive solution strategies for unstructured space-
time meshes. The formulation employs a finite computational fluid domain surround-
ing the structure and incorporates exact time-dependent non-reflecting (radiation)
boundary conditions on the fluid truncation boundary. New time-dependent non-
reflecting boundary conditions for the acoustic wave equation are developed based on
the exact impedance relation through the Dirichlet-to-Neumann (DtN) map in the
frequency domain, Time-dependent counterparts are obtained through an inverse
Fourier transform procedure. Optimal stability estimates and convergence rates are
reported together with a discussion of the positive form of the resulting space-time
matrix equations. Representative numerical examples involving transient radiation
achieved by the new method for structural acoustics.

11.1 Introduction

This chapter is concerned with the design of new computational methods for transient
structural acoustics. The methods are discussed in greater detail in [143, 146, 148,
149, 150, 151]. The solution method is based on a new space-time Galerkin /Least-
squares variational formulation for structural acoustics which utilizes discontinuous in
time shape functions. Important attributes of the time-discontinuous technology for
transient structural acoustics include a natural framework for; (i) the application of
self-adaptive solution strategies for unstructured space-time finite element discretiza-
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tions, (1) the implementation of high-order accurate time-dependent non-reflecting
boundary conditions, and (zi¢) high-order accurate and unconditionally stable solution
algorithms.

For linear problems characterized by a relatively small range of frequencies, a
transient solution may be obtained indirectly through a sequence of time-harmonic
solutions in the frequency domain followed by an inverse Fourier transform. Con-
siderable progress has been made in the development of numerical methods for the

time-harmonic exterior structural acoustics problem (see previous chapters). Still, a -

direct time-domain approach to solution of transient problems is necessary whenever
nonlinearities occur and may be advantageous for some classes of linear problems
including real-time dynamic control and optimization. For example, in problems
characterized by broad frequency spectra, such as short pulse wave propagation, the
indirect approach may not be computationally feasible since it requires a large num-
ber of solutions in the frequency domain for any reasonably accurate sweep of the
problem band width. Previous direct time-domain approaches to the transient struc-
tural acoustics problem involving the interaction of vibrating structures submerged
in an infinite acoustic fluid have employed (i) boundary element methods based on
Kirchhoff’s retarded potential integral formulation [68, 109, 111,112, 115], (ii) Taylor-
Galerkin methods, e.g. [128] and (iii) semi-discrete methods which employ standard
Galerkin finite element methods in space and finite difference techniques for integrat-
ing in time (also referred to as the method of lines), see e.g. [124, 125, 126]. However
it 1s well known that these standard methods are not optimal for general transient
wave propagation problems; especially those involving sharp gradients in the solution
arising in the complex radiation and scattering fields in the vicinity of fluid-structure
interfaces and near inhomogeneities such as stiffeners and structural joints.

Boundary element methods based on the.direct time integration of Kirchhoff’s
retarded potential boundary integral suffer from unsymmetric and dense matrices.
and, more importantly, can be extremely memory intensive due to the convolution in
time required by the time-dependent free-space Green’s function used in the kernel of
the boundary integral. When used for medium to long time calculations, the boundary
integral approach requires storage of a large pool of historical data during the solution
process that can quickly become prohibitive when solving large-scale fluid-structure
interaction problems. Semi-discrete finite element methods developed within the
context of structural dynamics e.g. the Newmark [116] and Hilber, Hughes, and
Taylor [66] algorithms will generally not adequately captureall the important solution
features appearing in physically realistic transient structural acoustics applications.
Other difficulties include the incorporation of high-order accurate absorbing boundary
conditions and truly self-adaptive schemes in a semidiscrete finite element formulation
for transient wave propagation in infinite domains.

Motivated by the success of Galerkin/Least-squares stabilization methods for the
time-harmonic problem [60, 152], it is natural to extend these ideas to the transient
problem through a direct time-domain approach. The solution methods described
in this chapter and [143, 148, 146, 149, 150, 151] are based on a new space-time
Galerkin/Least-squares finite element formulation for structural acoustics which uti-
lizes discontinuous in time shape functions. The proposed method employs the si-
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multaneous discretization of the spatial and temporal domains and is based on a
new time-discontinuous variational formulation for the coupled fluid/structure Sys-
tem. The discontinuous Galerkin method in time was first introduced by Lesaint and
‘Raviart [106] in the context of neutron transport. In this approach, the concept of
space-time slabs is employed which allow for discretizations that are discontinuous
in time and offers great flexibility in the discretization; in particular through the
possibility of using space-time meshes oriented in along space-time characteristics.
The resulting space-time algorithm gives a general solution to the fundamental prob-
lem of constructing a finite element method for transient structural acoustics with

“the desired combination of good stability and high accuracy. Stability is obtained
through the introduction of temporal jump operators which give rise to a natural
high-frequency dissipation required for the accurate resolution of sharp, gradients in
the physical solution. Additional stability is obtained by a least-squares modification
which guarantees maximum norm stability, consistency, error localization and accu:
rate shock resolution. The order of accuracy of the solution is related to the order of
the finite element spatial and temporal basis functions, and can be specified to any
accuracy and for general unstructured discretizations in space and time.

In addition to the advantages cited above, the space-time finite element approach
provides a powerful framework for unified and simultaneous spatial and temporal
adaptivity of the discretization. This is especially useful in the application of self-
adaptive solution strategies for transient structural acoustics, in which both spatial
and temporal enhancement can efficiently capture waves propagating along space-
time characteristics. Furthermore the use of space-time hp-adaptive discretization
strategies, where a combination of mesh size refinement /unrefinement (b-adaptivity),
and finite element basis enrichment (p-adaptivity), can easily be accommodated in
the time-discontinuous formulation. Because the temporal and spatial domains are
treated in a consistent manner in the space-time variational equations, the method
gives rise to a firm mathematical foundation from which rigorous a posteriori error
estimates useful for reliable and efficient adaptive schemes may be established, see
e.g. [28, 55, 89, 91]. o

Discontinuous Galerkin (DG) space-time methods with residual based stabiliza-
tion such as Galerkin/Least-squares (GLS) methods; also referred to as the Streamline
Diffusion (SD) or Streamline Upwind Petrov-Galerkin (SUPG) methods in the con-
text of fluid flows, have successfully been applied to first-order hyperbolic systems of
partial differential equations by Johnson, Hughes and colleagues, see e.g. (70, 88, 93],
and are now widely used in many applications arising in computational fluid dynam-
ics (CFD), including problems governed by the compressible Euler and Navier-Stokes
equations [64, 134, 136], advection-diffusion problems [76], and large-eddy and tur-
bulence modeling [84].

Classical linear structural acoustics equations can be converted to first-order hy-
perbolic form and these methods are thus immediately applicable. However, in this
approach, the coupled state vector consists of structural displacements, velocities and

stresses, as well as acoustic pressure and velocity components, which is computa-
tionally uneconomical. Recently, Hughes and Hulbert [77, 81, 82] have successfully
extended the time-discontinuous Galerkin space-time method to second-order hyper-
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bolic equations in the context of transient elastodynamics. Based on the success of
the time-discontinuous method for elastodynamics, it is desirable to extend this tech-
nology to the coupled structural acoustics problem involving the second-order wave

. equation governing acoustics and the equations of elastodynamics for the structure.

For the coupled equations, scalar velocity potential is chosen as the solution variable
for the acoustic fluid, while the displacement vector is used for the structure. As a
consequence of this choice of variables, the coupled variational equations give rise to
a positive matrix form, which in the context of the space-time finite element formu-
lation, allows for the proof of the unconditionally stability and. convergence of the

" method.

- For time-harmonic analysis it is possible to obtain an exact non-reflecting bound-
ary condition on a separable truncation boundary through the Dirichlet-to-Neumann
(DtN) map [98], in the frequency domain. Motivated by the good stability and ac- -
curacy properties of the DtN map in the frequency domain it is natural to attempt
to extend these ideas to the time-domain. A direct time-dependent counterpart to
the DtN map can be obtained through a convolution integral in time, resulting in
a boundary condition that is non-local in both space and time dimensions. Unfor-
tunately, while this condition is stable and exact for solutions consisting of the first
N wave harmonics by design, the implementation requires storage of all previous
solutions up to the current time step, and is not feasible for large-scale computations.

A time-dependent counterpart to the DtN map which retains the property of being
exact for the first N wave harmonics on the truncation boundary has been derived in
Thompson and Pinsky [143, 146, 150] by replacing the temporal convolution integral
with local temporal derivatives. Two alternative sequences of time-dependent non-
reflecting boundary conditions starting from the DtN map in the frequency domain
have been obtained; the first involves both time and spatial derivatives (local in time
and local in space version), and the second involves time derivatives while retaining
a spatial integral (local in time and nonlocal in space version).

As the order of these and other non-reflecting boundary conditions increases they
become increasingly difficult to implement in a semidiscrete setting due. to the oc-
currence of high-order time derivatives on the fluid truncation boundary. It is shown
that the time-discontinuous Galerkin space-time method provides a natural varia-
tional setting for the incorporation of high-order accurate, local in time non-reflecting
boundary conditions by allowing for the use of standard C° continuous finite element
interpolations in time.

11.2 The Transient Structural Acoustics Prob-
lem

Consider the coupled system illustrated in Figure 11.1, consisting of the computa-
tional domain Q = Q; U Q,, composed of a fluid domain § f» and structural domain
Q. The fluid boundary 89y, is divided into the fluid-structure interface boundary
[';, and the artificial boundary I'.,. The structural boundary 0%, is composed of
the fluid-structure interface boundary I'; and a traction boundary I',. The infinite
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Figure 11.1: Coupled system for the exterior fluid-structure interaction problem, with
artificial boundary I's, enclosing the finite computational domain Q = s U Q.

domain outside the artificial boundary is denoted by Q... The temporal interval of
interest is I =]0,T'[ and the number of spatial dimensions is d. ‘

The structure is governed by the equations of elastodynamics while the fluid equa-
tions are derived under the usual linear acoustic assumptions of an inviscid, com-
pressible fluid with small disturbance. The strong form of the fluid-structure initial
boundary-value problem is given by:

Find w:Q, x [O,T]‘r-—-» R, and ¢ : Q0 x [0,T) — R, such that

Vo —p,s = 0 in Q;=Q,x I (11.1)

o = C:Vu in Q, =0, x I (11.2)
Vi —alp = f in Q;=0;x I | (11.3)
u-n = Vé.n on T;,=T,x1 (11.4)

on = pién | on T,=T,x 1. (11.5)

on = t on T,=T,x 1T (11.6)
Vé-n = —S,.¢ on To =Ty x I (11.7)

In the above, u(z,t) with € Q,, is the structural displacement vector, o is
the symmetric Cauchy stress tensor, and ¢(z,t) with & € Qy, is the scalar acoustic
velocity potential. The phase velocity of acoustic wave propagation is denoted by
¢ > 0, with slowness a = ¢! and p, > 0 and ps > 0 are the reference densities
of the structure and fluid respectively. The acoustic source loading is given by f
and the prescribed traction on the structure is £. A superposed dot indicates partial
differentiation with respect to time ¢, and V* refers to the symmetric gradient. The
acoustic pressure, p, and the acoustic velocity, v, are related to the velocity potential
by p= —psé and v = V4. ‘

As a consequence of the above coupled second-order system of hyperbolic equa-
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Figure 11.2: Illustration of two consecutive space-time slabs with unstructured finjte
element meshes in space-time.

tions, we have the initial conditions,

w(@,0) = w(e) ; Ww,0) = wo(e) ceQ, (11.8)
$(z,0) = ¢o(z) ; $(2,0) = go(x) €y (1L9)

Equation (11.1) governs the linear momentum balance of the structure, while
(11.2) is the constitutive relationship written here for linear elasticity. Equation
(11.3) is the acoustic scalar wave equation, Equation '(11.4) is the normal velocity
compatibility condition across the fluid-structure interface, and (11.5) represents the
fluid pressure acting on the structure. Equation (11.6) is the applied traction. Equa-
tion (11.7) is the radiation boundary condition imposed on the artificial boundary I,
which approximates the asymptotic behavior of the solution at infinity, as described
by the Sommerfeld radiation condition, which asserts that at infinity all waves are
outgoing. The specific definition of the operator S,, relating Dirichlet to Neumann
data on the boundary is described in Section 11.5.

11.3 Space-time Finite Element Formulation

The development of the space-time method proceeds by considering a partition of the
time interval, I =]0, T'[, of the form: 0 =ty <, < ... < In=T,with I, =]t,,t,4].
Using this notation, Q¢ = Q, x I,,, and Q=0 s X I, are the nth space-time slabs for
the structure and fluid respectively. For the nth space-time slab, the spatial domain
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is subdivided into (ne)n elements. and the interior of the e element is defined as
Q:. Figure 11.2 shows an illustration of two consecutive space-time slabs @,_; and
@ for the fluid where the superscript is omitted for clarity. ,

Within each space-time element, the trial solution and weighting function are
approximated by pth-order polynomials in & and ¢. These functions are assumed
C°Q») continuous throughout each space-time slab, but are allowed to be discontin-
uous across the interfaces of the slabs. This feature of the time-discontinuous method,
allows for the general use of high-order elements and spectral-type interpolations in
both space and time. The collections of finite element interpolation functions are
given by the spaces,

Trial structural displacements

s=Ust, & = {wh(=, t)u € (COQ2))¢, ut

n=0

s€\\d
or € (P(@)])
Trial fluid potential

r=Uz, 1 - {¢"(=,0]¢" € %@, ¢ - € PO}

n=0

where PP denotes the space of pth-order polynomials and C° denotes the space
of continuous functions. For clarity, prescribed displacements and velocity potential
boundary conditions were not defined, i.e. only natural boundary conditions are
given. As a result the trial function spaces and weighting spaces are identical, i.e.
S" = V% and Th = Wk, :

Before stating the space-time variational equations, it is useful to introduce the
following notation. '

(w", uh)g, = /{; wh . uh d0
a(wh, ut)q, = /Q th-a(Vuh)JQ
C(wh, ¢, = /Q LR

f
R R _ h 4R
(wh ér = [wtetar
tn 1
W e, = [T (wh, $adt

The meaning of other similar terms may be inferred from these.

11.4 New Space-time Variational Equations

The space-time variational formulation is obtained from a weighted residual of the
governing equations and incorporates time-discontinuous jump terms. The specific

e
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form of this new formulation is designed such that unconditional stability for arbitrary
space-time finite element discretizations can be proved through a functional analysis
of the method. The time-discontinuous Galerkin formulation can be stated formally
as:

Within each space-time slab, n = 0,1,..., N—1; Find (u*, ¢") € Shx T*, such that
V(w", w*) € V* x Wh, the following coupled variational equations are satisfied,

Gs(w",uh, 9", = o0 (11.10)
Gy(wh, uh, M), = 0 Ly
where ' .
. tn tnt1 .
Gy(w", ut, ¢, = /t " (ot peiit)g dt + /t Yot ut)g, dt (11.12)
tn . tn _
= [ Gt gty dt - [Tk B, dt
in tn ’
+(@*(t}), pslat(ta)]a, + a(wh(t}), [u(t.)])a,
tn+1 .' .- tn+1 .
Gy(w*, uh, ¢"), = /t (", pra®dt)g dt + /t (Vi psVh)g di

(11.13)
tnyl . tntl
+ [T @k prit )y d = [T @*, psf)q, di

(), @ o8 (ta))n, + (VwH(E]) , oIV (ta)])s,

Gt ¢

In the operator G, the terms evaluated over 0, x I,,, weakly enforce the momentum
balance in the structure while in G #, the terms evaluated over Qs x I,,, weakly enforce
the scalar wave equation over the interior domain of the space-time slab. Fluid-
structure interaction is accomplished through the coupling operators defined on the
fluid-structure interface I'; x I,. The operator G, incorporates the time-dependent
radiation boundary conditions on the boundary I'y,, and will be described later in
Section 11.5. '

An important component in the success of the space-time method is the incorpo-
ration of discontinuous temporal jump terms at each space-time slab interface.

[ht)] = w(e,t) — wh(z, i)

These jump operators weakly enforce initial conditions across time slabs and are cru-
cial for obtaining an unconditionally stable algorithm for unstructured space-time
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finite element discretizations with high-order interpolations. The specific form of
these jump operators are designed such that a natural norm emanates from the vari-
ational equation and satisfies a strong coercivity condition. From a Fourier analysis.
. it can be shown that the jump operators introduce beneficial numerical dissipation
for frequencies above the spatial resolution limit.

The method is applied in one space-time slab at a time; data from the end of
- the previous slab are employed as initial conditions for the current slab. Introducing
space-time finite element approximations for 4" and ¢"* into the variational equations
leads to the coupled system of algebraic equations to be solved in sequence for each
“time interval I, =)t,, t,1[, n=0,1,.-- N — 1: o '

K, A d| | f :
[AT KfH¢}_{ff} (L)
where d and ¢ are the global solution vectors for time interval I, K is the matrix

emanating from the structural operator G,, and K is the matrix emanating from
the fluid operator Gy, and A is the fluid-structure coupling matrix.

- N tnt1
4 = A i /F NI NG, dr* dt (11.15)
where INJ(z,t) € @}, and N§(z,t) € Q are the e element shape functions for the
structure and fluid respectively. ’

11.5 Non-reflecting Boundary Conditions

A new sequence of time-dependent non-reflecting boundary conditions which are exact
for the first N spherical wave harmonics on T, are developed. We start with the
exact time-harmonic solution to the reduced wave equation (Helmholtz equation)
in the exterior domain (2., expressed through the frequency-dependent non-local
Dirichlet-to-Neumann map on the boundary I',. With harmonic time dependence
e~ frequency w > 0, and the boundary I, restricted to be a sphere of radius r = R
in R®, the exact non-local Dirichlet-to-Neumann (DtN) boundary condition is [98],

0¢ i

(R, 0,0) =) Zn(kR)/ sn(0,0,0,¢") 6(R,0',¢") dI’ (11.16)
on = Too
where the DtN kernels s,,, n =0,1,2,--- are given by,
Sn =9 'an;Pi(cos ) P!(cos ¢') cosj(6 — 6') (11.17)
j=0

_ (2n+1)(n—j)

Qnj = 57 R (n 4 )] (11.18)
with impedance coefficients,
~ kh!(kR).
zn(kR) = —"(——) (11.19)

hn(kR)




map.
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In the above, k = w/c is the acoustic wavenumber, 0 < § < 27 is the circumferential
angle and 0 < ¢ < 7 is the polar angle for a spherical truncation boundary of radius
r = R. The differential surface area is dI' = R?sin pdfdyp, P! are associated Legendre

functions of the first kind, and %, are spherical Hankel functions of the first kind of

order n. The prime on &, indicates differentiation with respect to its argument, and

the prime after the sum indicates that a factor of 1/2 multiplies the term with j = 0.

In [143, 150] it is shown that when the solution on the boundary T contains
only a finite number of spherical harmonics, then (11.16) can be transformed into
an exact condition which is local in both # and ¢. The transformation is based on

 the ideas of Givoli and Keller [42], where a spatially local counterpart to the non-

local DtN map S was obtained for the two-dimensional Helmholtz equation. The
extension to three-dimensions was given by Harari [56]. Use is also made. of the
special property of spherical Hankel functions k, which have the unique feature of
being exactly represented by a finite and convergent series up to order n:

o (n+j)!<—l )J’ | |
n =h —1)" - - - ) =0,1,2,--. 11.20
hn(kR) = ho(kR) [( 7Y iy (R |- (1120
As this series involves only inverse powers of the nondimensional wavenumber (ikR)
and the zero order term ho = €*F/(ikR) can be factored out of the sum, an inverse
Fourier transform can be found which yields a local in time counterpart to the DtN

The sequence of local boundary conditions is obtained by truncating the DtN map
given in (11.16), so that the sum over n extends over the finite rangen =0,1,--- N—1,
and expressing the first N terms in the DtN map as:

a¢ N-1 -
n=0 .
where .
Ya(0, ) =3 'Pi(cosp)(Anjcosjb+ Byjsingd) (11.22)
j=0

are spherical surface harmonics of order n, with nonlocal coefficients Ay; and By;.
The initial goal is to replace the nonlocal spatial integrals embedded in the coefficients
Anj and By; with local spatial derivatives. This can be accomplished by recognizing
that Y, can be interpreted as eigenfunctions of the Laplace-Beltrami operator

1 0 (. 0 1 0 '
Ar = singo% <Sll’l (p%) + —_Sin2(‘08—92— (1123)

~with eigenvalues A = —n(n + 1), so that

[n(n+ 1Y, = (-Ar)"Y, (11.24)
This property of the spherical harmonics suggests writing the impedance coefficients

as a series of powers of n(n + 1):

2n(kR) = Nz—l[n(n +1)I"Bm(kR), n=0,1,---,N—1 ' (11.25)

m=0




Finite element methods for strucural acoustics : ‘ 193

This is a system of N linear equations for the N unknown values 8,,,m =0,1.--- N.
Using (11.25) to replace z, in (11.21) gives, '

3¢ N-1N-1 | _
5, (Bbw) =3 3 Bu(kR)[n(n+1)]"Ya(6, ¢) (11.26)

n=0 m=0

Now using (11.24) to replace [n(n + 1)]™Y, with the high-order tangential derivatives
(—Ar)™Y,, and using the assumption that the solution ¢ on I'y, contains only the first
N spherical harmonics, the following sequence of local radiation boundary conditions
is obtained: '

oy _ 2 ny
5n = L Ga(PR)(-Ar)"6 on T, (11.27)

where the values of §,,(kR) are obtained by solving the N x N linear algebraic system
(11.25). Since this sequence follows directly from the truncated DtN map, these
radiation boundary operators are exact for waves consisting of the first N spherical
harmonics.. In this case, the nonlocal spatial integrals have been replaced by a linear
map expressed in terms of the differential operator (Ar)™.

The next step is to obtain an exact local in time counterpart to (11.27) through
an inverse Fourier transform. To this end use is made of the finite series expansion for
the spherical Hankel functions embedded in the coefficients Bm(kR). The procedure is
explicated by deriving the first two local in time counterparts in the sequence (11.27).

11.5.1 New exact time-dependent boundary conditions

For the first operator in the sequence corresponding to N = 1, the system (11.25) .
reduces to the simple result zo(kR) = By(kR), so that the local DtN condition (11.27)
specializes to,

96 khi(kR) | ~ B

I = h(iR) é (11.28)
For clarity, set A, := h,(kR), and use the relation hy = —hy and (11.20) with n = 1,
" e ' - '
v 1N ,
to obtain a simplified expression for (11.28):
0¢ : 1 .
== (zk _ ﬁ) é (11.30)

The time-dependent counterpart to (11.30) is obtained by direct application of the
inverse Fourier transform, in effect, replacing every occurrence of the operator (—uk)™
by (12)™ with the result,

do 1 1.
Bi¢:=—+ =0+ -¢= : .
19 n + R¢+ c¢ 0 (11.31)
This condition is perfectly absorbing for only axially symmetric spherical waves (out-

going wave harmonic n = 0).

.
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To obtain a high-order accurate boundary condition, take N = 2,'so that the
system (11.25) yields, o = zo and B; = (21 — 20)/2, and (11.27) becomes,

3} 1 , :
—¢' = Zo¢ + —(Zo - ZI)AP¢ . (1132)
) on 2
Clearing the common denominator hoh, and using the recurrence relation,
| . n+1 ) |
=hpy — hy, =1,2,... 11.33
by = hoy = (21 n (11.39

in conjunction with (11.20) and after some algebraic manipulation, we obtain the
simplified form,

1 .\ 0¢ . 2k 1 1 ’
- - _— = —_— = —A 11.34
(R k) Bn (" TR TRt gt (11.34)
Since this expression involves only terms in powers of (2k)™, the inverse Fourier trans-
form is readily obtained with the desired result,

¢ ROs R-. 2 1

Bigim gt + =20 S+ 2+ 26— L Arg =0 (11.35)
This higher-order accurate local boundary condition is perfectly absorbing for the first
two spherical wave harmonics of orders n = 0 and n = 1. Expressions for the exact
time-dependent local boundary conditions for higher-order harmonics N = 3,4,-- -,
will involve higher-order temporal and tangential derivatives, and are obtained using

-the same procedure as indicated for N = 1,2; see (143, 150]. ,

This new sequence of local time-dependent boundary conditions previde increas-
ing accuracy with order N which, however, is also a measure of the difficulty of
implementation. In general, the Nth-order condition contains all the even tangen-

~ tial and temporal derivatives up to order 2(N — 1). Because the time-discontinuous
formulation allows for the use of C° interpolations to represent the high-order time
derivatives, it is possible to implement ‘this sequence of time-dependent absorbing
boundary conditions up to any order desired. However for high-order operators in
the sequence extending beyond N > 3, the lowest possible order of spatial continuity
on the artificial boundary that can be achieved after integration by parts is CV=2. For
these high-order operators a layer of boundary elements adjacent to I's, possessing
high-order tangential continuity on I',, are needed. '

To obtain non-reflecting boundary conditions which possess the important prop-
erty of locality in time, without the requirement of high-order tangential continuity,
a local in time counterpart to the spatially nonlocal DtN map (11.16) is derived
which exactly represents the first N spherical wave harmonics. This new sequence
of boundary conditions retains the nonlocal spatial integral, yet replaces the time-
convoluted DtN map with higher-order local time derivatives. This new sequence
of time-dependent boundary conditions has the advantage that when implemented
in the time-discontinuous finite element formulation, standard C° interpolation func-
tions may be used for both the space and time variables. Consider the first term in

c
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the truncated DtN series with N = 1, then (11.16) reduces to,

09

on
where so = 1/(47R?) and 2z = khy/ho. Using h} = —h; and (11.20) and clearing the
denominator hq gives the alternate form,

% = (ik—%)/rmcﬁso a NUELNS

Taking the inverse Fourier transform results in the local in time but nonlocal in space
boundary condition, :

= zo/F é50 T’ (11.36)

_ 09 ;.1 '
B i= 5;+/Fm <c¢+ R¢> sodl" =0 S (1L38)

This condition is perfectly absorbing for axially symmetric spherical waves.
For N = 2, the first two terms in the truncated DtN series (11.16) take the form,

9¢
on

Using the definition for z,(kR) and relations (11.20), (11.33) and clearing the common
denominator hoh; we obtain the alternative form,

zO/r é 50 azr’+z1/F 51 dT’ (11.39)

1 .N® [, 2k 1 e, 2k 2 o
(=) 5 = (’“ +7"R—z) b, P d +(’“ tE o) fote
(11.40)
Direct application of the inverse Fourier transform gives
8¢ . RO R. 2. 1 >
B.¢ :=—?+—‘—? + (‘5¢+—¢+—¢) so dI’
. On Fw \C*" ¢ R

+ [ (Z+Ee L) ar'=o L4y

where sq and s; are'defined in (11.17). This condition is perfectly absorbing for the

first two spherical wave harmonics of order n = 0 and n = 1.
Similarly for N = 3 [143, 150], '

2R 4R? R3
Bsd = ¢, + T¢,m + 37?5,7”: + ﬁsﬁ,nm (11.42)
R3 5R? 10R 3 1 p
+ /Foo <§‘c—4¢.ttit + ’§3"¢,ttt + '3—02“¢,tt + Z¢,t + Etﬁ) so dI

R? SR

2 11R 4 2 '
3—CZ¢,tttt + o5 b+ —2-¢,tt + Z¢'t + —¢) s dI’

3c3 3c R

R3 5R? 13R 6 3 ,
+ /I“oo (37¢,tttt + gcgqs,m + ?éz_qs,tt + z¢,t + E‘ﬁ) s2 dI' = 0(11.43)
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' This condition is perfectly absorbing for the first three spherical wave harmonics of
order n = 0,1,2. These are nonlocal operators that involve a spatial integral vet retain
the important property of locality in time. In general, the boundary operators in this
sequence will have higher-order time derivatives up to 2(N — 1). When implemented
in the discontinuous space-time finite element formulation, standard C%T x I,)
continuous interpolations may be used on the radiation boundary in both the space
and time dimensions.

11.5.2 Space-time finite element implementation

The most direct approach in which to implement the exact time-dependent boundary
conditions is to define a linear operator S,, as, '

. 09
Brn(4) := 5+ Sm(¢) (11.44)
which implies 5 .
= —Smé on Ty (11.45)

In this way, the boundary conditions are expressed in a form relating Dirchlet-to-
Neumann data. For example, the first three local in space and time operators S,, for
m equal to 1,2 and 3 are:

. . 1 1
S1¢ = EOt oo : (11.46)
1 1 4] R ,
S:¢ = ﬁ—@ — Ar)¢ + p (2 + RE) b+ 'C_2¢,tt (11.47)
Sz = L(24—14A -(a )2)¢>+i 6—A 4Ra |
* 7 R oA 3¢ \0 T AT T ARG ) 4
R 9 R? 0 R?
-+ 5z (20 - A'r + SRE) b1 + 32 (5 + RE) @1t + gQé,tttt (11.48)

These boundary conditions are incorporated into the finite element method as a
natural boundary condition, i.e., they are enforced weakly in both time and space. For
example, the operator defined on T, in Eq. (11.13) for the second-order boundary
condition m = 2 is given by: :

Gonli", 8 = [™7(5%, $20M) dtot da(P22) , H(0) D, + o (62), [94(0)

(11.49)
where the space-time integral on the boundary is defined as,

tn+1 . . R N . .
/t (@Y Sadh)p, dt = do(wh, ¢y, + i, B p,, + dalit ") (too)n
(11.50)
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Figure 11.3: Space-time finite element solution of radiating cylinder. Results at
the artificial boundary T'y, show that temporal jump terms are required on I',, for
stability. '

and

. tn+1 . i ’ tn-)-l .
D" My, = F [ @ ra b+ L[ it o) at

tntl A
Ps (@, csc®() ¢4 )r,, dt (11.51)

2R Ji,
psR

‘ . . 2 tn+1 . . tn-H .' . )
it B, = [T @ e+ 2 [ w0 gy quise)

. tnt1 .
i Py, = [ @ P | (11.5)
In the above expressions, continuity requirements due to second-order tangential
derivatives in the Laplace-Beltrami operator Ar, are relaxed on the artificial bound-
ary I's;, by using integration by parts. ‘

The form of the terms defined in (11.49) involving temporal jump operators eval-
uated on the boundary I, can be inferred from eqns. (11.51) and (11.53). These
consistent jump terms act to weakly enforce continuity of ¢* and #" between space-
time-slabs at the boundary I's,. These additional operators are needed in order to
ensure unconditional stability for the solution and are the crucial element that enable
generalization of the time-discontinuous space-time finite element method to handle
unbounded domains.

Figure 11.3 illustrates how the space-time solution can become unstable as outgo-
ing waves are transmitted through I, if the temporal jump terms defined in ( 11.49)
are omitted. The result shows the numerical solution of transient radiation from a
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cylinder that is driven to steady-state. The solid line is the exact time-harmonic solu-
tion. When the jump terms are included, the local boundary condition, S,, displays
the correct transient solution for short time, (time less than 6 seconds), and then
quickly assumes the exact steady-state solution. When the jump terms are omitted.
the solution quickly becomes unstable, generating large spurious oscillations.

11.6 Galerkin/Least-squares Stabilization

- In order to add additional stability to the time-discontinuous Galerkin space-time
formulation; and in addition, prove that the method converges for arbitrary space-
time discretizations and higher-order interpolations, local residuals of the governing
differential equations in the form of least-squares are added to the Galerkin variational
equations. The Galerkin/least-squares addition to the variational equation for the

fluid is, _ ,
Glrs(w®, u, ") = G, ut, ") + (psrLywt, (L1¢" — f))@,{
+ (prslow®, Lag*) g, + (prcsLow®, Lsgh) g,
+ (psSsul(@)], [#h(2)]) iz,

where (L1w* — f = V2w — a?" — f) is the residual for the wave equation, (Low" =
w” + Snw*) is-the radiation boundary residual, and (Law" = wh, — 4 - n) is the
interface boundary residual. In the above expressions, a tilde refers to integration
over element interiors and 7 and s are local mesh parameters designed to improve
desirable high frequency numerical dissipation without degrading the accuracy of the
underlying Galerkin method. For the structural equation (11.12) similar least-squares
terms are added, see [143]. Consistency of the method is clear from the fact that
a sufficiently smooth exact solution of the coupled initial/boundary-value problem

satisfies the variational equations identically.

11.7 Stability and Convergence Analysis

In this section, results are summarized from a stability and convergence analysis of
the space-time finite element formulation for the exterior structural acoustics problem
(143, 149]. A natural measure of stability for the coupled structural acoustics problem
is the total energy for the system: '

| E(u, ¢) :=E(u)+ &(d) ‘ (11.54)
where the energy for the structure is,
1 . . 1 '
E(u) = 3 (w, psit)g, + 5 a(u, u)g, (11.55)

while the energy for the acoustic fluid is,

_ 1 . 1
¢ = serlladtllo, + 5 IV8HG,  (1156)
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11.71 A pribri energy estimates

In the absence of forcing terms, i.e., £ = 0 and_f = 0, and for Si, it has been proved in
[143, 149] that the following energy decay inequality holds for the coupled space-time
formulation: '

Eu(ut b)) + £ ) + Sl + 5 [ b, at
< &(uo)) + E5(do)) ' (11.57)

forn =0,1,2,---, N—1. This result states that the total energy in the fluid-structure
system, plus the energy absorbed through the radiation boundary, is always less than,
or equal to the initial energy in the system. A corollary to this estimate is that the
computed total energy for the system plus the radiation energy absorbed through the
artificial boundary at the end of a time step is always less than or equal to the total
energy at the previous time step for arbitrary step sizes, i.e.

£ (t510) + (8 17 + I + 2 [ k017 a

- ~ w1 -2
< E(uh(t)) + £ (8M()) + 518" )l (11.58)
forn=0,1,2,--- N — 1. Results (11.57) thru (11.58) both imply that the space-time
formulation presented is unconditionally stable. See [143] for an analogous result for
the interior problem where no radiation boundary conditions are present.

11.7.2 A priori error estimates

To study the convergence rates of the space-time finite element formulation for the
exterior structural acoustics problem the following space-time mesh size parameters
are introduced. For the structural domain s, hs = max{c At Az} where cf, is the
dilatational wave speed and Az and At are maximum element diameters in space
- and time, respectively. For the fluid domain Q, hy = max{cAt, Az} where c is
the acoustic wave speed. Assuming that the exact solution to the strong form of the
initial /boundary value problem with S; is sufficiently smooth in the sense that,

v e (H™(Q,)* and ¢ e B Q) (11.59)

and assuming standard finite element interpolation estimates hold, then it has been
proved in [143, 149] that the following error estimate holds for the time-discontinuous
Galerkin/Least-squares formulation,

NEN" < c(u) AT + (g) hZ (11.60)

where k£ and p are the finite element interpolation orders for the structure and fluid
respectively. In the above, the error is defined as

E={e,e} where e=u"—wu and e=¢"— é, (11.61)
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and c(u) and c(¢) are values that are independent of the mesh size parameters A,
and hy. The norm in which convergence is measured is given by,

N-1
BT = &(e0") + X &let)]) + &(e(T))

N-1
o Er(e07) + 20 &(le(ta)]) + Ex(e(T))

N-1 1

O + X gl + gl

=
aR e )
N-=-1

1 fteea | .
- JRCOROIN
N-1 '

> {(L.e, o7 7Lee)s,

n=0

(lo(Ve)=2)] - n, p;'s[o(Ve)(z)] - n)(t ),
(o(Ve)-n, p;'so(Ve) - n)x,),

(0(Ve)-n —psén, p7lso(Ve) - n — prén)r,),
ller'/2Luellgy + lles/Laelfz._,,

2
lles*[en(@)]llz,,

+ (8 ‘n—e,, 028é ‘n — e,n)('r‘.)n} (1162)

n=1

+ o+ + 4+ + 4+

In the above expression L u” is the residual for the structure. This norm emanates
naturally from the coupled fluid-structure variational equations (11.12) and (11.13).
The error estimate is optimal in the sense that the finite element error converges at
the same rate as the interpolate. This result indicates that the error for the coupled
system is controlled by the convergence rates in both the structure and the fluid.
In other words, for an accurate solution to the coupled fluid-structure problem, dis-
. cretizations for both the structural domain and the fluid domain must be adequately
resolved:.’ ' ' :

11.7.3 Numerical confirmation of error estimates

To verify the numerical convergence rates of the space-time finite element formulation,
the response of the one-dimensional wave equation in the semi-infinite interval 0 <
T < oo was calculated by introducing a truncation boundary at L = 4, and imposing
an exact non-reflecting boundary condition at this position. The exact boundary
condition for this problem is the ‘plane-wave damper’,

$a(L,t) = =(1/c)$(L,1) | (11.63)
The left end (¢ = 0) is fixed. A transient pulse is initiated at zo = 2.4 as,

2

do(z) = % (1 -‘l cos 2/\—7T(rc - xo)) | (11.64)
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Figure 11.4: Convergence of the numerical error employing the Q2 element; h = hy is
the element mesh size parameter. Results confirm the convergence rate (2p — 1) = 3
for p = 2.

with wavelength A = 0.8. The response was calculated for the time interval 0 <t <
T = 1.8. Each space-time slab was discretized with a uniform mesh of 160 biquadratic
elements. Figure 11.4 shows the error computed using the Galerkin/least-squares
formulation at time T = 1.8. This result confirms that a cubic rate of convergence is
obtained as predicted by (11.60).

11.8 Representative Numerical Examples

A number of numérical'examples are described to demonstrate the effectiw}eness of the
time-discontinuous space-time finite element method to accurately model transient

- radiation and scattering from geometrically complex structures. The problems inves-

tigated are primarily designed to assess the performance of the local non-reflecting
boundary conditions. For all the numerical results presented, the GLS mesh param-
eters are set to zero and standard quadratic finite element shape functions are used
in both the time and space dimensions. Additional numerical examples are reported
in [143, 146, 150, 151].

11.8.1 Nonconcentric spherical radiator

Consider a sphere of radius r = a, pulsating with a uniform sine pulse, ¢(a,t) = sinwt
and w = 7, during the short time interval ¢ € [0,1]. Initial conditions are set to zero
and the wave speed is ¢ = 1. The exact solution to this problem is an outgoing
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Figure 11.5: Computational domain for a sphere shifted from the center of a spherical
non-reflecting boundary. Upper half modeled with 1518 axisymmetric elements using
quadratic interpolation.

spherical wave of short duration with a 1/r amplitude decay:

$(r 1) = G)sinw(t—f/c) (11.65)

where 7 = 7 —a is the radial distance from the spherical radiator and (¢ — 7/ c) € [0,1].

If the radiating sphere is placed concentric with a spherical artificial boundary
then for the radiation field given in (11.65), the problem is trivial in that the first
order $,, and the higher order local non-reflecting boundary conditions are all exact
by design. In order to obtain a challenging problem, the radiating sphere is shifted
from the center of the spherical artificial boundary I', to a nonconcentric position.
In this example, the radiating sphere is offset by a distance a, with the radius of Fe
set at R = 3a, see Figure 11.5. With this positioning, wave fronts traveling outward.
"along radial lines will strike the artificial boundary at oblique angles. The closer the
radiating sphere gets to the edge of T, the more acute this angle becomes, making
it increasingly difficult for the local boundary conditions to transmit outgoing waves
without spurious reflection. , .

Figure 11.5 shows the computational domain discretized with 1518 axisymmetric
elements. Figure 11.6 shows the elevated contours of the time-discontinuous Galerkin
solution using the second-order local boundary operator S, defined in (11.47) applied
to I',. In the upper left corner of F igure 11.6, the solution is shown at the end of
the initial sine pulse at time ¢ = 1. As time progresses, the initial pulse propagates
outward from the sphere as a uniform spherical wave pulse of decreasing amplitude.
After t = 1, the spherical pulse begins to pass through the artificial boundary T’
with negligible reflection. These results illustrate the remarkable performance of the
second-order operator S, to transmit waves striking the artificial boundary at rather
severe angles.
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For comparison, this same problem was solved with the low-order boundary op-
erator S;. Figure 11.7 shows a plot of the solution on the artificial boundary T’ at
the axis of symmetry, ¢ = 0. The solution using S, shows the correct amplitude and
phase for the outgoing pulse, and shows no observable reflections behind the wave
front. In contrast, the solution using S; shows an increase in the maximum amplitude
of the outgoing pulse as well as significant reflections, as manifested by the non-zero
amplitudes appearing for times t > 2.

- 11.8.2  Scattering from a geometrically complex cylinder

As a final example, consider the space-time finite element solution of the time-
dependent scattering from a rigid cylinder with conical-to-spherical end caps and
a large length to diameter ratio. Figure 11.8 illustrates the finite element spatial dis-
cretization of the computational domain bounded internally by the lateral projection
of the benchmark cylinder, and externally by a circular artificial boundary. A total
of 1600 space-time elements are used for this example.

For this two-dimensional problem, we have implemented the sequence of high- -
order approximate local boundary conditions described in (125] and [126], which are
based on the radial asymptotic solution to the wave equation in two-dimensions. In
particular, the following second-order local time-dependent boundary operator is used
for this problem. ‘

2
S20 = %%'(3/4"f 5%)¢+ %¢+§g—f+§¢ (11.66)
The pulse f = §(z¢,yo)sinwt and ¢ € [0, 3], is positioned inside the computational
domain simulating an oblique incident wave during a short time period. The numeri-
cal simulation is continued until just prior to reaching the practical disappearance of
the signal from the domain. This example represents a challenging problem where the
multiple-scales involving the ratio of the wavelength to cylinder diameter and cylinder
length dimension play a critical role in the complexity of the resulting scattered wave
field. ] ' -
The numerical simulation starts with the initial pulse shown in Figure 11.8 at
t = 3. The accompanying figures show the contours of the scattering phenomena from
the cylinder with homogeneous Neumann boundary conditions on the wet surface, i.e.
‘rigid’ boundary conditions. At ¢ = 6 the incident pulse has expanded in a cylindrical
wave and has just reached the boundaries of the rigid cylinder. At the artificial
boundary, the wave front is allowed to pass through the boundary with no reflection.
At ? =9, the wave has begun to reflect off the rigid boundary, creating a complicated
backscattered wave. As time passes, the originally cylindrical incident wave has been

scattered into a part that travels along the upper part of the cylinder, and a part
that diffracts around the backside.
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Radiation from a nonconcentric sphere.
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Figure 11.7: Radiation from a nonconcentric sphere: Solution on the artificial bound-
ary I'e, at the axis of symmetry ¢ = 0, (left) S; local boundary condition. (right)
S local boundary condition.
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Figure 11.8: Scattering from a geometrically complex rigid structure due to point

source. Solution contours shown for initial pulse at ¢ = 3 and later times ¢ —
6,9,15,18 ‘




Chapter 12

Conclusions

In this work we have presented finite element methods for boundary-value problems
of structural acoustics with particular reference to exterior domains. Finite element
techniques are based on a general-purpose methodology and, by their nature, are
not restricted to linear, isotropic and homogeneous problems. This is in contrast to
boundary elements, the numerical methods that are prevalent in this field. Our goal
was to construct discrete formulations for these problems that are mathematically
rigorous, simple to implement and computationally efficient, while retaining the full
generality of finite element technology. Computed solutions must represent wave
phenomena accurately, yet not deteriorate when physical features are not sufficiently
resolved by the numerical mesh.

The DtN approach provides a suitable basis for the computation of solutions
to exterior problems by defining a bounded computational domain with appropriate
boundary conditions for such problems, precluding singular behavior in finite element
models. The solution of the boundary-value problem in a bounded domain obtained
by the DtN method is identical to the solution of the boundary-value problem in
the original domain, restricted to the computational domain. As such, the solution
obtained by the DtN method is unique for all wave numbers. DtN boundary condi-
tions are therefore non-reflective in accordance with the radiation condition that they
replace. Subject to geometric considerations, there are no restrictions on the location

of the artificial boundary.- Analysis of the truncated operator shows that it fails to

completely inhibit the reflection of higher modes, allowing non-unique solutions to
occur at their harmonics. However, as long as the number of terms in the DtN map
respects the bound (3.22) in terms of the wave number nondimensionalized by the
radius of the artificial boundary, uniqueness of solutions is guaranteed. Based on
these simple results it is easy to automate software to verify that a minimum number
of terms in the operator is present, or to set the number of terms if desired. The
result of this analysis is verified numerically by examining the dependence of the con-
ditioning of the ensuing discrete equations on the number of terms in the boundary
operator. In accordance with the theoretical prediction, the coefficient matrices are
well conditioned as long as at least the required number of terms is employed in the
map. Other parameters of the problem, such as the geometrically nondimensionalized
wave number (by a length scale of the body) and the numerically nondimensionalized
wave number, were not found to bring about the kind of degradation in conditioning
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that is associated with non-unique solutions. Employing the local approximation of
the DtN map retains uniqueness of solutions for all wave numbers. Overall. we found
the DtN method to be a viable approach for defining appropriate boundary condi-
tions on bounded domains, significantly increasing the appeal of finite elements for
the computation of exterior problems.

Discrete formulations were derived on the basis of computa.tlonal problems de-
fined by the DtN method. Numerical techniques were constructed by the standard
Galerkin method and variants thereof, obtained by appending residuals of the Euler-
Lagrange equations in least-squares form to the Galerkin equation. These variants
were designed to enhance certain properties and yet retain advantageous features of
Galerkin formulations, while adding virtually no complexity in implementation.

We initially analyzed in detail numerical solutions to model problems with plane
wave solutions describing physical phenomena that include propagation and decay.
Solutions obtained by the Galerkin method were acceptable only with a relatively
high degree of mesh refinement. We designed the Galerkin/least-squares finite el-
ement method with DtN boundary conditions to be suitable for obtaining robust
numerical solutions to the Helmholtz equation in unbounded domains over the en-
tire range of interest, achieving high accuracy of the phase and magnitude without
requiring excessive resolution. Finite element methods are thus rendered economi-
cally competitive. Galerkin/least-squares solutions are exceptionally accurate on the
artificial boundary which is crucial to the representation of the far field by the DtN
method. When physical phenomena are not sufficiently resolved by the mesh, the
Galerkin/least-squares method is designed to damp out the numerical solution. Su-
perior behavior is thus ezhibited by the Galerkin/least-squares finite element method
with DtN boundary conditions in the entire range of propagation and decay. This is
the scheme that we advocate for computing solutions to problems of time-harmonic
acoustics. ‘

We have shown that high-order finite element discretizations display frequency
bands where the solutions take the form of harmonic decaying waves. In these ‘stop-
ping’ bands, the solutions are not purely propagating (real wavenumbers) but are
attenuated (complex wavenumbers). In order to interpret the solution within the
stopping bands, the standard finite element dispersion analysis technique has been
extended to include complex wavenumbers. By allowing for complex wavenumbers,
a complete characterization of the stopping bands in the frequency spectrum of hier-
archical p-version and spectral finite element discretizations has been obtained. The
most important conclusions from this study are: '

1. High-order elements display increased phase accuracy compared to low-order
~ elements for the same number of degrees of freedom.

2. For large spectral orders, the width of the first few stopping bands are very small
and the amplitude attenuation is minimal. Thus for high-order finite element
discretizations, the first few stopping bands in the frequency spectrum are not

. of practical significance. ~

3. For well resolved waves, spectral elements using Lagrange interpolation in con-
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junction with Lobatto quadrature show slightly improved phase accuracy com-
pared to hierarchic finite elements. For frequencies extending beyond the limit
of resolution, both dispersion and amplitude attenuation errors increase the
most for spectral elements.

In multi-dimensional configurations, employing geometrically graded meshes in
~ the close vicinity of disturbances (boundaries and concentrated sources) may improve
the solution, but outside that neighborhood the use of uniform discretizations is rec-
ommended, although not required. The selection of optimal Galerkin/ least-squares
" mesh parameters for multi-dimensional wave propagation was considered. The GLS
parameter 7 is designed from the criterion that numerical phase error be minimized
over all directions of wave propagation. Results from both the Fourier analysis and
numerical examples verify that as the wave resolution is decreased, the degradation
in phase accuracy present in the Galerkin solution is reduced and in some cases
eliminated by the proper choice of the GLS parameter 7. Extensions of GLS to three-
dimensions was also presented. An analysis of the Galerkin/Gradient Least-squares
(GVLS) method for multi-dimensional wave propagation indicated that GVLS and
GLS have similar dispersion .characteristics for uniform, linear finite element dis-
cretizations. . .
A global convergence analysis of the Galerkin/least-squares method for the re-
duced wave equation in the entire range of acoustic phenomena, with error bounds
obtained for the case of unresolved waves, guarantees good performance of the method
on configurations of practical interest. By virtue of employing DtN boundary condi-
tions, convergence of the numerical solution to the exact solution is with mesh refine-
ment, without expanding the computational domain. Numerical calculations confirm
the performance of these formulations for general multi-dimensional configurations.
This work clearly demonstrates that finite element methods are economically com-
petitive with boundary element methods for obtaining solutions to problems of time-
harmonic acoustics. Despite the fact that boundary elements need less equations to
discretize the same physical problem, the structure possessed by the.finite element
equations often leads to an overall computational advantage. In the context of direct
 solution techniques, finite element methods are more cost-effective for smaller prob-
lems and boundary element methods gain a computational edge for relatively large
problems. The symmetry and bandedness of the matrices that emanate from finite
elements bring the crossover very near, and at times beyond, the limit of problem size
to which direct solvers are applicable, rendering the direct solution of finite element
equations more economical in most of the range of problems on which direct solvers
are employed. As a rule, iterative solution techniques are applicable to large-scale
problems. For iterative solvers, we found boundary elements to be more economical in
the lower part of the problem-size range, and finite elements on the higher end of the
scale. By effective utilization of the element-based data structure inherent in finite el-
ements the crossover is lowered sufficiently to cause the range in which finite elements
are more economical to coincide with most of the range in which iterative solvers are
practical. To summarize, in the examples considered herein, we found finite element
methods to be more cost-effective than boundary element methods within the range
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of applicability of each solution technique.

Comparing the two solution strategies demonstrates that efficient implementation
of iterative techniques has the potential of being more cost-effective for all problems
- of interest, as long as the equations are well-conditioned, motivating wider accep-
tance of iterative strategies. Nevertheless, we expect direct solvers, by virtue of their
reliability and predictability, to be retained in commercial codes for relatively small
| problem-size applications. This work indicates that unlike many traditional numerical

applications, set-up costs may constitute a significant portion of the computational
expense, pointing to opportunities for considerable savings by addressmg these issues
‘alongside economizing equation-solving strategies.

By and large, the results of this study lead us to conclude that the use of bound-
ary element techniques for this class of problems, to the exclusion of other methods,
cannot be supported solely on the basis of cost. The only clear-cut advantage bound-
ary elements hold over finite elements appears to be in boundary discretization vs.
domain discretization. In three-dimensional problems, the resulting simplification of
mesh generation is indeed substantial. However, the general-purpose applicability, ro-
bustness and mathematical structure, and overall flexibility of finite element methods
(in allowing such tradeoffs as reducing wave number restrictions at added compu-
tational cost by simply appending layers of elements to the mesh) highlight their
attractiveness, justifying further development of effective finite element methods to
complement prevalent boundary element methods.

Numerical results presented demonstrate the superiority of QMR over other gradient-
‘type iterative methods for solving problems in acoustics. The hierarchical basis pre-
conditioner, based on a careful selection of the associated multilevel splitting, and
employed in conjunction with QMR results in a very efficient iterative strategy for
solving large-scale acoustics problems on massively parallel computers. Current re-
sults are based on the effectiveness of these algorithms for uncoupled problems in two-
dimensions. It is expected that the iterative solver and the proposed preconditioner
will also prove effective for the coupled problem. Extension to three-dimensional
problems needs further investigation. : ‘

Key technologies needed for adaptive analysis were presented, with results showing
significant computational efficiency engendered through adaptivity. A residual-based
a posteriori error estimator was presented for both the Galerkin and Galerkin Least-
Squares finite element formulations of the Helmholtz equation. The error estimator is
an upper bound on the L; norm of the error; the use of this norm is important since
the Helmholtz operator lacks positive-definiteness, preventing the use of an energy
norm. An adaptive strategy was outlined which produces an element size distribution
from the estimated error distribution. In combination with the advancing front mesh
generator of Peraire [122], these technologies were implemented for the problem of
non-uniform radiation from a rigid infinite circular cylinder, with ka = 2r. Optimal
convergence rates were obtained for both uniform and adaptive mesh refinement.
However, the adaptive meshes required over three times fewer elements for a given
level of accuracy. These results were translated into a cost savings, in terms of both
computation and storage, based on the cost of a direct solver. Relative to Galerkin
computations on a uniform mesh, adaptivity was shown to be twenty times more
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efficient in terms of computation time and over eight times more efficient in terms of
required storage. The combination of GLS and adaptivity produced a savings of a
factor of forty in computation time.

The Galerkin/Gradient Least-squares member of the family of Galerkin/Generalized
Least-squares (GGLS) methods was-applied to the solution of Timoshenko beam
problems. This method was designed for optimality with regard to wave propagation
characteristics. Results of the implementation of this method demonstrate its superi-
ority over standard methods for the steady-state beam vibration problem. This new
method results in a fivefold decrease in the required minimum discretization over the
selective reduced integration element with a consistent mass approximation. It was
shown that the selective reduced integrated element and a modified version of selec-
tive reduced integration with mass lumping can both be considered GGLS methods. .
Other variants of GGLS can be formed by different selection of the 7’s. The use of
GGLS methods to enhance the accuracy of the approximation to fluid-loaded struc-
tures has garnered significant benefits. The application of these methods for more
complicated geometries and three dimensional calculations is an area of future work.

A new space-time finite element method for solution of the transient structural
acoustics problem in exterior domains was presented. The formulation is based on
a new time-discontinuous Galerkin/Least-squares variational equation for both the
structure and the acoustic fluid together with their interaction. The resulting space-
time algorithm gives for the first time a general solution to the fundamental problem
of constructing a finite element method for transient structural acoustics with un-
structured meshes in space-time and the desired combination of good stability and
high accuracy. ‘

Desirable attributes of the new computational method for transient structural
acoustics include a natural framework for the design of rigorous a posteriori error
estimates for self-adaptive solution strategies for unstructured space-time discretiza-
tions, and the implementation of high-order accurate time-dependent non-reflecting
boundary conditions. Furthermore, through the use of acoustic velocity potential and
structural displacement as the solution variables, the space-time method is uncondi-
tionally stable and converges at an optimal rate in a norm which is stronger than
the total energy norm. High-order accuracy 1is obtained simply by raising the order
of the space-time polynomial basis functions; both standard nodal interpolation and
hierarchical shape functions are accommodated. '

New time-dependent non-reflecting boundary conditions which are exact for the
first IV spherical wave harmonics have been developed for the scalar wave equation in
three space dimensions. Two new sequences of time-dependent non-reflecting bound-
ary operators were derived; the first involves both time and spatial derivatives (local
in time and local in space version), and the second involves time derivatives yet re-
tains a spatial integral (local in time and nonlocal in space version). The development
of these boundary conditions began with the truncated Dirichlet-to-Neumann (DtN)
map in the frequency domain. Time-dependent boundary conditions were obtained
by an inverse Fourier transform. The time-discontinuous Galerkin space-time formu-
lation provides a natural variational setting for the incorporation of these local in
time boundary conditions.
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Numerical solutions obtained for the time-dependent acoustic radiation from a
nonconcentric sphere demonstrated the improved accuracy that results from the im-
plementation of the high-order non-reflecting boundary conditions in the space-time
variational formulation. In particular, results confirm the superiority of the second-
order local non-reflecting boundary condition S,, in comparison to the first-order
$: boundary condition. It has also been demonstrated that with proper usage, the
second-order non-reflecting boundary condition S,, when implemented in the space-
time finite element method, is sufficiently accurate to capture the important physics
associated with a complicated transient scattering problem involving some rather
severe geometric and time scales:

This work has concentrated on the computation of solutions to problems of struc-
tural acoustics. We expect Galerkin/least-squares finite element methods with DtN
boundary conditions to provide a suitable framework for obtaining numerical solu-
tions to related exterior problems, such as electromagnetic waves. Examining such
opportunities may be a thrust of future work.
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